Why is this code so slow? The 2019 Stack Overflow Developer Survey Results Are InWhy is FindRoot initial value far from the specified one?Newton-Raphson Method and the Van der Waal Equation Coding questionWhat are the hidden specifications for FindRootHow can I resolve the insufficient memory to complete the computation problem for solving function with iterated variables?Why does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list

Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past

The phrase "to the numbers born"?

How do PCB vias affect signal quality?

How do you keep chess fun when your opponent constantly beats you?

How to add class in ko template in magento2

Likelihood that a superbug or lethal virus could come from a landfill

Why is this code so slow?

Are there any other methods to apply to solving simultaneous equations?

How to quickly solve partial fractions equation?

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

What is preventing me from simply constructing a hash that's lower than the current target?

How much of the clove should I use when using big garlic heads?

If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Does adding complexity mean a more secure cipher?

How did passengers keep warm on sail ships?

Why not take a picture of a closer black hole?

What do these terms in Caesar's Gallic Wars mean?

Why doesn't shell automatically fix "useless use of cat"?

ELI5: Why they say that Israel would have been the fourth country to land a spacecraft on the Moon and why they call it low cost?

Short story: man watches girlfriend's spaceship entering a 'black hole' (?) forever

Will it cause any balance problems to have PCs level up and gain the benefits of a long rest mid-fight?



Why is this code so slow?



The 2019 Stack Overflow Developer Survey Results Are InWhy is FindRoot initial value far from the specified one?Newton-Raphson Method and the Van der Waal Equation Coding questionWhat are the hidden specifications for FindRootHow can I resolve the insufficient memory to complete the computation problem for solving function with iterated variables?Why does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list










2












$begingroup$


This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



 Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1

A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]









share|improve this question









$endgroup$
















    2












    $begingroup$


    This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



     Clear[A, r, x, s, e]
    s := 0.3405
    e := 1.6539*10^-21
    u[0] := 0.
    u[1] := 0.1

    A[r_] := A[r] =
    Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
    r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
    s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
    24*e*s^-1, r < s]
    For[i = 2, i < 101,
    i++, u[i_] :=
    x /. FindRoot[
    u[i - 1] +
    1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
    0.9 A[x] == x , x, 1.]; Print[u[i]]]









    share|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



       Clear[A, r, x, s, e]
      s := 0.3405
      e := 1.6539*10^-21
      u[0] := 0.
      u[1] := 0.1

      A[r_] := A[r] =
      Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
      r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
      s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
      24*e*s^-1, r < s]
      For[i = 2, i < 101,
      i++, u[i_] :=
      x /. FindRoot[
      u[i - 1] +
      1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
      0.9 A[x] == x , x, 1.]; Print[u[i]]]









      share|improve this question









      $endgroup$




      This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



       Clear[A, r, x, s, e]
      s := 0.3405
      e := 1.6539*10^-21
      u[0] := 0.
      u[1] := 0.1

      A[r_] := A[r] =
      Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
      r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
      s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
      24*e*s^-1, r < s]
      For[i = 2, i < 101,
      i++, u[i_] :=
      x /. FindRoot[
      u[i - 1] +
      1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
      0.9 A[x] == x , x, 1.]; Print[u[i]]]






      equation-solving iteration






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 2 hours ago









      morapimorapi

      203




      203




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



          s = 0.3405;
          e = 1.6539*10^-21;
          u[0] = 0.;
          u[1] = 0.1;

          A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
          -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
          r - s - 24*e*s^-1, r < s];

          u[i_] := u[i] = x /. FindRoot[
          u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

          Array[u, 100]



          0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
          0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
          1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
          0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
          0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
          0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
          0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
          0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
          0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
          0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
          0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
          0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
          0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
          0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
          0.554408, 0.56675




          (takes about 5 seconds)



          Alternatively, use



          Table[u[i], i, 1, 100]


          (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






          share|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



            s = 0.3405;
            e = 1.6539*10^-21;
            u[0] = 0.;
            u[1] = 0.1;

            A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
            -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
            r - s - 24*e*s^-1, r < s];

            u[i_] := u[i] = x /. FindRoot[
            u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

            Array[u, 100]



            0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
            0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
            1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
            0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
            0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
            0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
            0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
            0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
            0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
            0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
            0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
            0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
            0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
            0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
            0.554408, 0.56675




            (takes about 5 seconds)



            Alternatively, use



            Table[u[i], i, 1, 100]


            (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






            share|improve this answer











            $endgroup$

















              4












              $begingroup$

              I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



              s = 0.3405;
              e = 1.6539*10^-21;
              u[0] = 0.;
              u[1] = 0.1;

              A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
              -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
              r - s - 24*e*s^-1, r < s];

              u[i_] := u[i] = x /. FindRoot[
              u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

              Array[u, 100]



              0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
              0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
              1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
              0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
              0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
              0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
              0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
              0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
              0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
              0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
              0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
              0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
              0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
              0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
              0.554408, 0.56675




              (takes about 5 seconds)



              Alternatively, use



              Table[u[i], i, 1, 100]


              (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






              share|improve this answer











              $endgroup$















                4












                4








                4





                $begingroup$

                I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



                s = 0.3405;
                e = 1.6539*10^-21;
                u[0] = 0.;
                u[1] = 0.1;

                A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
                -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
                r - s - 24*e*s^-1, r < s];

                u[i_] := u[i] = x /. FindRoot[
                u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

                Array[u, 100]



                0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
                0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
                1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
                0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
                0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
                0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
                0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
                0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
                0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
                0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
                0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
                0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
                0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
                0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
                0.554408, 0.56675




                (takes about 5 seconds)



                Alternatively, use



                Table[u[i], i, 1, 100]


                (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






                share|improve this answer











                $endgroup$



                I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



                s = 0.3405;
                e = 1.6539*10^-21;
                u[0] = 0.;
                u[1] = 0.1;

                A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
                -48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
                r - s - 24*e*s^-1, r < s];

                u[i_] := u[i] = x /. FindRoot[
                u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

                Array[u, 100]



                0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
                0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
                1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
                0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
                0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
                0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
                0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
                0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
                0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
                0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
                0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
                0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
                0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
                0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
                0.554408, 0.56675




                (takes about 5 seconds)



                Alternatively, use



                Table[u[i], i, 1, 100]


                (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 1 hour ago

























                answered 1 hour ago









                RomanRoman

                5,11011130




                5,11011130



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                    Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її

                    Перекидне табло Зміст Переваги | Недоліки | Будова | Посилання | Навігаційне менюПерекидне таблоU.S. Patent 3 220 174U.S. Patent 3 501 761Split-flap-display