How to quickly solve partial fractions equation? The 2019 Stack Overflow Developer Survey Results Are InHow can this indefinite integral be solved without partial fractions?Separation of variables and substituion; first integral from the Euler-Differential Equation for the minimal surface problemHow to set up partial fractions?How to solve $int frac,dx(x^3 + x + 1)^3$?How to solve this integral by parts?Integration of rational functions by partial fractionsCompute $int _0 ^infty fracx^alpha1+x^2, mathrm d x$ for $-1<alpha<1$How can $int fracdx(x+a)^2(x+b)^2$ be found?Solve $int frac1cos^2(x)+cos(x)+1dx$How do I solve this trivial complex integral $int^w_0 fracbz(z-a)(z+a)textrmdz$?

Can withdrawing asylum be illegal?

How do you keep chess fun when your opponent constantly beats you?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

How did passengers keep warm on sail ships?

What is this sharp, curved notch on my knife for?

Why doesn't UInt have a toDouble()?

How come people say “Would of”?

Dropping list elements from nested list after evaluation

How do PCB vias affect signal quality?

Why not take a picture of a closer black hole?

What does もの mean in this sentence?

Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past

How can I have a shield and a way of attacking with a ranged weapon at the same time?

Does adding complexity mean a more secure cipher?

Finding the area between two curves with Integrate

What do these terms in Caesar's Gallic Wars mean?

Getting crown tickets for Statue of Liberty

Does HR tell a hiring manager about salary negotiations?

Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?

How much of the clove should I use when using big garlic heads?

Are spiders unable to hurt humans, especially very small spiders?

Worn-tile Scrabble

"as much details as you can remember"

What is the motivation for a law requiring 2 parties to consent for recording a conversation



How to quickly solve partial fractions equation?



The 2019 Stack Overflow Developer Survey Results Are InHow can this indefinite integral be solved without partial fractions?Separation of variables and substituion; first integral from the Euler-Differential Equation for the minimal surface problemHow to set up partial fractions?How to solve $int frac,dx(x^3 + x + 1)^3$?How to solve this integral by parts?Integration of rational functions by partial fractionsCompute $int _0 ^infty fracx^alpha1+x^2, mathrm d x$ for $-1<alpha<1$How can $int fracdx(x+a)^2(x+b)^2$ be found?Solve $int frac1cos^2(x)+cos(x)+1dx$How do I solve this trivial complex integral $int^w_0 fracbz(z-a)(z+a)textrmdz$?










2












$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago















2












$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago













2












2








2





$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$




Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.







calculus integration indefinite-integrals quadratics partial-fractions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







weno

















asked 3 hours ago









wenoweno

42311




42311







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago












  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago







1




1




$begingroup$
Don't you mean find $A,B$? $alpha,beta$ are usually given.
$endgroup$
– Eevee Trainer
3 hours ago




$begingroup$
Don't you mean find $A,B$? $alpha,beta$ are usually given.
$endgroup$
– Eevee Trainer
3 hours ago












$begingroup$
Yes. Fixed. Thank you!
$endgroup$
– weno
3 hours ago




$begingroup$
Yes. Fixed. Thank you!
$endgroup$
– weno
3 hours ago












$begingroup$
Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
$endgroup$
– Eevee Trainer
3 hours ago




$begingroup$
Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
$endgroup$
– Eevee Trainer
3 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



$$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



$$1 = A(t + beta) + B(t + alpha)$$



Evaluating $beta$ for $t$:



$$1 = B(alpha - beta)$$



$$B = frac1alpha - beta$$



Similarly, for $A$, sub in $-alpha$:



$$1 = A(beta - alpha)$$



$$A = frac1beta - alpha$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I'll be coming back to this post. This is what I was looking for.
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
    $endgroup$
    – weno
    3 hours ago



















1












$begingroup$

If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
$$A_2 = frac 1(3-1)(3+4) = frac114$$



$$A_3=frac 1(-4-1)(-4-3)=frac135$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Here's your answer
    for general $n$.



    $dfrac1prod_k=1^n (x-a_k)
    =sum_k=1^n dfracb_kx-a_k
    $
    .



    Therefore
    $1
    =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
    =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
    $
    .



    Setting
    $x = a_i$
    for each $i$,
    all the terms
    except the one with $k=i$
    have the factor $a_i-a_i$,
    so
    $1 = b_iprod_j=1, jne i^n (a_i-a_j)
    $

    so that
    $b_i
    =dfrac1prod_j=1, jne i^n (a_i-a_j)
    $
    .



    For $n=2$,
    $b_1
    =dfrac1a_1-a_2
    $
    ,
    $b_2
    =dfrac1a_2-a_1
    $
    .



    For $n=3$,
    $b_1
    =dfrac1(a_1-a_2)(a_1-a_3)
    $
    ,
    $b_2
    =dfrac1(a_2-a_1)(a_2-a_3)
    $
    ,
    $b_3
    =dfrac1(a_3-a_1)(a_3-a_2)
    $
    .






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184487%2fhow-to-quickly-solve-partial-fractions-equation%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago
















      3












      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago














      3












      3








      3





      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$



      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 3 hours ago









      DairDair

      1,96711124




      1,96711124











      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago

















      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago
















      $begingroup$
      I'll be coming back to this post. This is what I was looking for.
      $endgroup$
      – weno
      3 hours ago




      $begingroup$
      I'll be coming back to this post. This is what I was looking for.
      $endgroup$
      – weno
      3 hours ago












      $begingroup$
      Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
      $endgroup$
      – weno
      3 hours ago





      $begingroup$
      Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
      $endgroup$
      – weno
      3 hours ago












      1












      $begingroup$

      If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



      Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



      For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
      Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
      $$A_2 = frac 1(3-1)(3+4) = frac114$$



      $$A_3=frac 1(-4-1)(-4-3)=frac135$$






      share|cite|improve this answer









      $endgroup$

















        1












        $begingroup$

        If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



        Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



        For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
        Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
        $$A_2 = frac 1(3-1)(3+4) = frac114$$



        $$A_3=frac 1(-4-1)(-4-3)=frac135$$






        share|cite|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



          Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



          For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
          Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
          $$A_2 = frac 1(3-1)(3+4) = frac114$$



          $$A_3=frac 1(-4-1)(-4-3)=frac135$$






          share|cite|improve this answer









          $endgroup$



          If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



          Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



          For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
          Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
          $$A_2 = frac 1(3-1)(3+4) = frac114$$



          $$A_3=frac 1(-4-1)(-4-3)=frac135$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Mohammad Riazi-KermaniMohammad Riazi-Kermani

          41.6k42061




          41.6k42061





















              0












              $begingroup$

              Here's your answer
              for general $n$.



              $dfrac1prod_k=1^n (x-a_k)
              =sum_k=1^n dfracb_kx-a_k
              $
              .



              Therefore
              $1
              =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
              =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
              $
              .



              Setting
              $x = a_i$
              for each $i$,
              all the terms
              except the one with $k=i$
              have the factor $a_i-a_i$,
              so
              $1 = b_iprod_j=1, jne i^n (a_i-a_j)
              $

              so that
              $b_i
              =dfrac1prod_j=1, jne i^n (a_i-a_j)
              $
              .



              For $n=2$,
              $b_1
              =dfrac1a_1-a_2
              $
              ,
              $b_2
              =dfrac1a_2-a_1
              $
              .



              For $n=3$,
              $b_1
              =dfrac1(a_1-a_2)(a_1-a_3)
              $
              ,
              $b_2
              =dfrac1(a_2-a_1)(a_2-a_3)
              $
              ,
              $b_3
              =dfrac1(a_3-a_1)(a_3-a_2)
              $
              .






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Here's your answer
                for general $n$.



                $dfrac1prod_k=1^n (x-a_k)
                =sum_k=1^n dfracb_kx-a_k
                $
                .



                Therefore
                $1
                =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                $
                .



                Setting
                $x = a_i$
                for each $i$,
                all the terms
                except the one with $k=i$
                have the factor $a_i-a_i$,
                so
                $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                $

                so that
                $b_i
                =dfrac1prod_j=1, jne i^n (a_i-a_j)
                $
                .



                For $n=2$,
                $b_1
                =dfrac1a_1-a_2
                $
                ,
                $b_2
                =dfrac1a_2-a_1
                $
                .



                For $n=3$,
                $b_1
                =dfrac1(a_1-a_2)(a_1-a_3)
                $
                ,
                $b_2
                =dfrac1(a_2-a_1)(a_2-a_3)
                $
                ,
                $b_3
                =dfrac1(a_3-a_1)(a_3-a_2)
                $
                .






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Here's your answer
                  for general $n$.



                  $dfrac1prod_k=1^n (x-a_k)
                  =sum_k=1^n dfracb_kx-a_k
                  $
                  .



                  Therefore
                  $1
                  =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                  =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                  $
                  .



                  Setting
                  $x = a_i$
                  for each $i$,
                  all the terms
                  except the one with $k=i$
                  have the factor $a_i-a_i$,
                  so
                  $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                  $

                  so that
                  $b_i
                  =dfrac1prod_j=1, jne i^n (a_i-a_j)
                  $
                  .



                  For $n=2$,
                  $b_1
                  =dfrac1a_1-a_2
                  $
                  ,
                  $b_2
                  =dfrac1a_2-a_1
                  $
                  .



                  For $n=3$,
                  $b_1
                  =dfrac1(a_1-a_2)(a_1-a_3)
                  $
                  ,
                  $b_2
                  =dfrac1(a_2-a_1)(a_2-a_3)
                  $
                  ,
                  $b_3
                  =dfrac1(a_3-a_1)(a_3-a_2)
                  $
                  .






                  share|cite|improve this answer









                  $endgroup$



                  Here's your answer
                  for general $n$.



                  $dfrac1prod_k=1^n (x-a_k)
                  =sum_k=1^n dfracb_kx-a_k
                  $
                  .



                  Therefore
                  $1
                  =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                  =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                  $
                  .



                  Setting
                  $x = a_i$
                  for each $i$,
                  all the terms
                  except the one with $k=i$
                  have the factor $a_i-a_i$,
                  so
                  $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                  $

                  so that
                  $b_i
                  =dfrac1prod_j=1, jne i^n (a_i-a_j)
                  $
                  .



                  For $n=2$,
                  $b_1
                  =dfrac1a_1-a_2
                  $
                  ,
                  $b_2
                  =dfrac1a_2-a_1
                  $
                  .



                  For $n=3$,
                  $b_1
                  =dfrac1(a_1-a_2)(a_1-a_3)
                  $
                  ,
                  $b_2
                  =dfrac1(a_2-a_1)(a_2-a_3)
                  $
                  ,
                  $b_3
                  =dfrac1(a_3-a_1)(a_3-a_2)
                  $
                  .







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 13 mins ago









                  marty cohenmarty cohen

                  75.3k549130




                  75.3k549130



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184487%2fhow-to-quickly-solve-partial-fractions-equation%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                      How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

                      Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її