Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers? The 2019 Stack Overflow Developer Survey Results Are InHow to find a random axis or unit vector in 3D?Picking random points in the volume of sphere with uniform probabilityIs a sphere a closed set?Random Point Sampling From a Set with Certain GeometryHow to Create a Plane Inside A CubeAlgorithm to generate random points in n-Sphere?Sampling on Axis-Aligned Spherical QuadRandom 3D points uniformly distributed on an ellipse shaped window of a sphereCompensating for distortion when projecting a 2D texture onto a sphereFind the relative radial position of a point within an ellipsoid
What do these terms in Caesar's Gallic Wars mean?
Why doesn't shell automatically fix "useless use of cat"?
How come people say “Would of”?
I am an eight letter word. What am I?
The phrase "to the numbers born"?
If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?
The difference between dialogue marks
Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past
Ubuntu Server install with full GUI
Can withdrawing asylum be illegal?
Will it cause any balance problems to have PCs level up and gain the benefits of a long rest mid-fight?
What do hard-Brexiteers want with respect to the Irish border?
What is the most efficient way to store a numeric range?
Why doesn't UInt have a toDouble()?
Why are there uneven bright areas in this photo of black hole?
What is the motivation for a law requiring 2 parties to consent for recording a conversation
Keeping a retro style to sci-fi spaceships?
Are there any other methods to apply to solving simultaneous equations?
How to obtain a position of last non-zero element
Dropping list elements from nested list after evaluation
How to notate time signature switching consistently every measure
Unitary representations of finite groups over finite fields
Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?
What to do when moving next to a bird sanctuary with a loosely-domesticated cat?
Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?
The 2019 Stack Overflow Developer Survey Results Are InHow to find a random axis or unit vector in 3D?Picking random points in the volume of sphere with uniform probabilityIs a sphere a closed set?Random Point Sampling From a Set with Certain GeometryHow to Create a Plane Inside A CubeAlgorithm to generate random points in n-Sphere?Sampling on Axis-Aligned Spherical QuadRandom 3D points uniformly distributed on an ellipse shaped window of a sphereCompensating for distortion when projecting a 2D texture onto a sphereFind the relative radial position of a point within an ellipsoid
$begingroup$
The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.
geometry
$endgroup$
add a comment |
$begingroup$
The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.
geometry
$endgroup$
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
47 mins ago
add a comment |
$begingroup$
The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.
geometry
$endgroup$
The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.
geometry
geometry
edited 28 mins ago
robjohn♦
271k27313642
271k27313642
asked 3 hours ago
The Zach ManThe Zach Man
1057
1057
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
47 mins ago
add a comment |
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
47 mins ago
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
47 mins ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
47 mins ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$
or
$z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$
$endgroup$
add a comment |
$begingroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184449%2fis-there-a-way-to-generate-a-uniformly-distributed-point-on-a-sphere-from-a-fixe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$
or
$z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$
$endgroup$
add a comment |
$begingroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$
or
$z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$
$endgroup$
add a comment |
$begingroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$
or
$z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$
$endgroup$
The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.
For $(u_1,u_2)$ uniform on $[0,1]^2$, either
$mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$
or
$z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$
answered 1 hour ago
robjohn♦robjohn
271k27313642
271k27313642
add a comment |
add a comment |
$begingroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
$endgroup$
add a comment |
$begingroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
$endgroup$
add a comment |
$begingroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
$endgroup$
Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.
Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.
(The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)
answered 3 hours ago
Misha LavrovMisha Lavrov
49k757107
49k757107
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184449%2fis-there-a-way-to-generate-a-uniformly-distributed-point-on-a-sphere-from-a-fixe%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn♦
3 hours ago
1
$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn♦
3 hours ago
$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
47 mins ago