Why does sin(x) - sin(y) equal this? The Next CEO of Stack OverflowProve that $sin(2A)+sin(2B)+sin(2C)=4sin(A)sin(B)sin(C)$ when $A,B,C$ are angles of a triangleWhy $sin(pi)$ sometimes equal to $0$?Understanding expanding trig identitiesWhy does this always equal $1$?When does this equation $cos(alpha + beta) = cos(alpha) + cos(beta)$ hold?Solve $ cos 2x - sin x +1=0$Writing equation in terms of sin and cosSolve Trigonometric Equality, Multiple Angle TrigonometryFinding relationships between angles, a, b and c when $sin a - sin b - sin c = 0$Does $sin^2x-cos^2x$ equal $cos(2x)$
Is it a bad idea to plug the other end of ESD strap to wall ground?
How to find if SQL server backup is encrypted with TDE without restoring the backup
Why did early computer designers eschew integers?
Early programmable calculators with RS-232
Planeswalker Ability and Death Timing
What is a typical Mizrachi Seder like?
Is a distribution that is normal, but highly skewed, considered Gaussian?
Gauss' Posthumous Publications?
Find a path from s to t using as few red nodes as possible
A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?
Is it OK to decorate a log book cover?
Direct Implications Between USA and UK in Event of No-Deal Brexit
Compensation for working overtime on Saturdays
How can I prove that a state of equilibrium is unstable?
Car headlights in a world without electricity
Mathematica command that allows it to read my intentions
Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?
Is the offspring between a demon and a celestial possible? If so what is it called and is it in a book somewhere?
Read/write a pipe-delimited file line by line with some simple text manipulation
Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico
Could a dragon use hot air to help it take off?
How do I secure a TV wall mount?
Does Germany produce more waste than the US?
Arrows in tikz Markov chain diagram overlap
Why does sin(x) - sin(y) equal this?
The Next CEO of Stack OverflowProve that $sin(2A)+sin(2B)+sin(2C)=4sin(A)sin(B)sin(C)$ when $A,B,C$ are angles of a triangleWhy $sin(pi)$ sometimes equal to $0$?Understanding expanding trig identitiesWhy does this always equal $1$?When does this equation $cos(alpha + beta) = cos(alpha) + cos(beta)$ hold?Solve $ cos 2x - sin x +1=0$Writing equation in terms of sin and cosSolve Trigonometric Equality, Multiple Angle TrigonometryFinding relationships between angles, a, b and c when $sin a - sin b - sin c = 0$Does $sin^2x-cos^2x$ equal $cos(2x)$
$begingroup$
Why does this equality hold?
$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.
My professor was saying that since
(i) $sin(A+B)=sin A cos B+ sin B cos A$
and
(ii) $sin(A-B) = sin A cos B - sin B cos A$
we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated
real-analysis analysis trigonometry
New contributor
$endgroup$
add a comment |
$begingroup$
Why does this equality hold?
$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.
My professor was saying that since
(i) $sin(A+B)=sin A cos B+ sin B cos A$
and
(ii) $sin(A-B) = sin A cos B - sin B cos A$
we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated
real-analysis analysis trigonometry
New contributor
$endgroup$
$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago
$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago
add a comment |
$begingroup$
Why does this equality hold?
$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.
My professor was saying that since
(i) $sin(A+B)=sin A cos B+ sin B cos A$
and
(ii) $sin(A-B) = sin A cos B - sin B cos A$
we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated
real-analysis analysis trigonometry
New contributor
$endgroup$
Why does this equality hold?
$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.
My professor was saying that since
(i) $sin(A+B)=sin A cos B+ sin B cos A$
and
(ii) $sin(A-B) = sin A cos B - sin B cos A$
we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated
real-analysis analysis trigonometry
real-analysis analysis trigonometry
New contributor
New contributor
New contributor
asked 2 hours ago
Ryan DuranRyan Duran
61
61
New contributor
New contributor
$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago
$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago
add a comment |
$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago
$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago
$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago
$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago
$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago
$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.
$endgroup$
add a comment |
$begingroup$
The main trick is here:
beginalign
colorred x = x+yover2 + x-yover2\[1em]
colorbluey = x+yover2 - x-yover2
endalign
(You may evaluate the right-hand sides of them to verify that these strange equations are correct.)
Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain
beginalign
sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
endalign
All the rest is then only a routine calculation:
beginalign
requireenclose
&= sin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-left[sin left(x+yover2right) cosleft( x-yover2 right) -
sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
&= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)
\[3em]
&=2sin left(x-yover2right) cosleft( x+yover2 right)\
endalign
$endgroup$
add a comment |
$begingroup$
Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
Note that $A+B=x$ and $A-B=y$.
Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.
To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171404%2fwhy-does-sinx-siny-equal-this%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.
$endgroup$
add a comment |
$begingroup$
Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.
$endgroup$
add a comment |
$begingroup$
Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.
$endgroup$
Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.
answered 2 hours ago
John DoeJohn Doe
11.4k11239
11.4k11239
add a comment |
add a comment |
$begingroup$
The main trick is here:
beginalign
colorred x = x+yover2 + x-yover2\[1em]
colorbluey = x+yover2 - x-yover2
endalign
(You may evaluate the right-hand sides of them to verify that these strange equations are correct.)
Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain
beginalign
sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
endalign
All the rest is then only a routine calculation:
beginalign
requireenclose
&= sin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-left[sin left(x+yover2right) cosleft( x-yover2 right) -
sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
&= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)
\[3em]
&=2sin left(x-yover2right) cosleft( x+yover2 right)\
endalign
$endgroup$
add a comment |
$begingroup$
The main trick is here:
beginalign
colorred x = x+yover2 + x-yover2\[1em]
colorbluey = x+yover2 - x-yover2
endalign
(You may evaluate the right-hand sides of them to verify that these strange equations are correct.)
Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain
beginalign
sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
endalign
All the rest is then only a routine calculation:
beginalign
requireenclose
&= sin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-left[sin left(x+yover2right) cosleft( x-yover2 right) -
sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
&= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)
\[3em]
&=2sin left(x-yover2right) cosleft( x+yover2 right)\
endalign
$endgroup$
add a comment |
$begingroup$
The main trick is here:
beginalign
colorred x = x+yover2 + x-yover2\[1em]
colorbluey = x+yover2 - x-yover2
endalign
(You may evaluate the right-hand sides of them to verify that these strange equations are correct.)
Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain
beginalign
sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
endalign
All the rest is then only a routine calculation:
beginalign
requireenclose
&= sin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-left[sin left(x+yover2right) cosleft( x-yover2 right) -
sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
&= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)
\[3em]
&=2sin left(x-yover2right) cosleft( x+yover2 right)\
endalign
$endgroup$
The main trick is here:
beginalign
colorred x = x+yover2 + x-yover2\[1em]
colorbluey = x+yover2 - x-yover2
endalign
(You may evaluate the right-hand sides of them to verify that these strange equations are correct.)
Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain
beginalign
sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
endalign
All the rest is then only a routine calculation:
beginalign
requireenclose
&= sin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-left[sin left(x+yover2right) cosleft( x-yover2 right) -
sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
&= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)
\[3em]
&=2sin left(x-yover2right) cosleft( x+yover2 right)\
endalign
edited 1 hour ago
answered 1 hour ago
MarianDMarianD
2,0531617
2,0531617
add a comment |
add a comment |
$begingroup$
Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
Note that $A+B=x$ and $A-B=y$.
Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.
To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.
$endgroup$
add a comment |
$begingroup$
Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
Note that $A+B=x$ and $A-B=y$.
Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.
To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.
$endgroup$
add a comment |
$begingroup$
Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
Note that $A+B=x$ and $A-B=y$.
Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.
To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.
$endgroup$
Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
Note that $A+B=x$ and $A-B=y$.
Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.
To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.
answered 58 mins ago
AdmuthAdmuth
585
585
add a comment |
add a comment |
Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.
Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.
Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.
Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171404%2fwhy-does-sinx-siny-equal-this%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago
$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago