Betweenness centrality formulaFormalization of the shortest path algorithm to a linear programShortest path that passes through specific node(s)Betweenness centrality and least average shortest pathSort graph nodes by densityFind hamilton cycle in a directed graph reduced to sat problemWhat does a ball of center v and radius r with at most r hops away mean?Polynomial LP-based algorithm for cost minimization of DAG weights modificationDjikstra's shortest path vs Brandes algorithm for betweeness centralityFind all the cumulative sums in a DAGMinimum path cover— Disjointed paths with minimum total number of edges

How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?

How to pronounce 'c++' in Spanish

Like totally amazing interchangeable sister outfits II: The Revenge

How do I reattach a shelf to the wall when it ripped out of the wall?

What makes accurate emulation of old systems a difficult task?

How do I deal with a coworker that keeps asking to make small superficial changes to a report, and it is seriously triggering my anxiety?

How much cash can I safely carry into the USA and avoid civil forfeiture?

Two field separators (colon and space) in awk

Converting a sprinkler system's 24V AC outputs to 3.3V DC logic inputs

'It addicted me, with one taste.' Can 'addict' be used transitively?

Can I grease a crank spindle/bracket without disassembling the crank set?

Why do games have consumables?

How to have a sharp product image?

Why does Mind Blank stop the Feeblemind spell?

a sore throat vs a strep throat vs strep throat

Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?

Pre-plastic human skin alternative

"Whatever a Russian does, they end up making the Kalashnikov gun"? Are there any similar proverbs in English?

How to not starve gigantic beasts

Do I have an "anti-research" personality?

What happens to Mjolnir (Thor's hammer) at the end of Endgame?

What does the integral of a function times a function of a random variable represent, conceptually?

Who was the lone kid in the line of people at the lake at the end of Avengers: Endgame?

bldc motor, esc and battery draw, nominal vs peak



Betweenness centrality formula


Formalization of the shortest path algorithm to a linear programShortest path that passes through specific node(s)Betweenness centrality and least average shortest pathSort graph nodes by densityFind hamilton cycle in a directed graph reduced to sat problemWhat does a ball of center v and radius r with at most r hops away mean?Polynomial LP-based algorithm for cost minimization of DAG weights modificationDjikstra's shortest path vs Brandes algorithm for betweeness centralityFind all the cumulative sums in a DAGMinimum path cover— Disjointed paths with minimum total number of edges













3












$begingroup$



Betweenness centrality is defined as the number of shortest paths that go through a node in the graph.The formula is:



$$sum_s neq v neq t fracsigma_st(v)sigma_st$$



Where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.




However it doesn't seem to me that the formula calculates what is defined. Why do we divide by the total number of shortest paths between $s$ and $t$ each time? Shouldn't we just divide by $2$ to compensate the fact that $s$ and $t$ will appear twice in different orders?










share|cite









$endgroup$
















    3












    $begingroup$



    Betweenness centrality is defined as the number of shortest paths that go through a node in the graph.The formula is:



    $$sum_s neq v neq t fracsigma_st(v)sigma_st$$



    Where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.




    However it doesn't seem to me that the formula calculates what is defined. Why do we divide by the total number of shortest paths between $s$ and $t$ each time? Shouldn't we just divide by $2$ to compensate the fact that $s$ and $t$ will appear twice in different orders?










    share|cite









    $endgroup$














      3












      3








      3





      $begingroup$



      Betweenness centrality is defined as the number of shortest paths that go through a node in the graph.The formula is:



      $$sum_s neq v neq t fracsigma_st(v)sigma_st$$



      Where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.




      However it doesn't seem to me that the formula calculates what is defined. Why do we divide by the total number of shortest paths between $s$ and $t$ each time? Shouldn't we just divide by $2$ to compensate the fact that $s$ and $t$ will appear twice in different orders?










      share|cite









      $endgroup$





      Betweenness centrality is defined as the number of shortest paths that go through a node in the graph.The formula is:



      $$sum_s neq v neq t fracsigma_st(v)sigma_st$$



      Where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.




      However it doesn't seem to me that the formula calculates what is defined. Why do we divide by the total number of shortest paths between $s$ and $t$ each time? Shouldn't we just divide by $2$ to compensate the fact that $s$ and $t$ will appear twice in different orders?







      graph-theory






      share|cite













      share|cite











      share|cite




      share|cite










      asked 3 hours ago









      ElooEloo

      515




      515




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$


          However it doesn't seem to me that the formula calculates what is defined.




          The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





          Why do we divide by the total number of shortest paths between s and t each time?




          You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

          One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





          Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




          Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




          Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



          Examples of star graphs






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
            $endgroup$
            – Apass.Jack
            40 mins ago



















          2












          $begingroup$

          Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



          One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assume each shortest is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.



          Assigning the same weight to each pair of starting vertex and destination vertex, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



          enter image description hereThe graph is created by https://graphonline.ru/



          If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



          • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

          • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

          Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing $v_3$ while we must pass $v_5$ to reach $v_6$ by shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example show that dividing by 2 is not the right way to normalize the measurement.








          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "419"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108582%2fbetweenness-centrality-formula%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$


            However it doesn't seem to me that the formula calculates what is defined.




            The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





            Why do we divide by the total number of shortest paths between s and t each time?




            You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

            One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





            Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




            Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




            Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



            Examples of star graphs






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
              $endgroup$
              – Apass.Jack
              40 mins ago
















            2












            $begingroup$


            However it doesn't seem to me that the formula calculates what is defined.




            The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





            Why do we divide by the total number of shortest paths between s and t each time?




            You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

            One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





            Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




            Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




            Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



            Examples of star graphs






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
              $endgroup$
              – Apass.Jack
              40 mins ago














            2












            2








            2





            $begingroup$


            However it doesn't seem to me that the formula calculates what is defined.




            The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





            Why do we divide by the total number of shortest paths between s and t each time?




            You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

            One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





            Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




            Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




            Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



            Examples of star graphs






            share|cite|improve this answer











            $endgroup$




            However it doesn't seem to me that the formula calculates what is defined.




            The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





            Why do we divide by the total number of shortest paths between s and t each time?




            You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

            One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





            Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




            Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




            Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



            Examples of star graphs







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 2 hours ago

























            answered 2 hours ago









            Iago CarvalhoIago Carvalho

            17017




            17017











            • $begingroup$
              It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
              $endgroup$
              – Apass.Jack
              40 mins ago

















            • $begingroup$
              It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
              $endgroup$
              – Apass.Jack
              40 mins ago
















            $begingroup$
            It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
            $endgroup$
            – Apass.Jack
            40 mins ago





            $begingroup$
            It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
            $endgroup$
            – Apass.Jack
            40 mins ago












            2












            $begingroup$

            Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



            One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assume each shortest is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.



            Assigning the same weight to each pair of starting vertex and destination vertex, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



            enter image description hereThe graph is created by https://graphonline.ru/



            If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



            • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

            • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

            Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing $v_3$ while we must pass $v_5$ to reach $v_6$ by shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example show that dividing by 2 is not the right way to normalize the measurement.








            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



              One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assume each shortest is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.



              Assigning the same weight to each pair of starting vertex and destination vertex, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



              enter image description hereThe graph is created by https://graphonline.ru/



              If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



              • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

              • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

              Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing $v_3$ while we must pass $v_5$ to reach $v_6$ by shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example show that dividing by 2 is not the right way to normalize the measurement.








              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



                One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assume each shortest is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.



                Assigning the same weight to each pair of starting vertex and destination vertex, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



                enter image description hereThe graph is created by https://graphonline.ru/



                If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



                • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

                • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

                Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing $v_3$ while we must pass $v_5$ to reach $v_6$ by shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example show that dividing by 2 is not the right way to normalize the measurement.








                share|cite|improve this answer









                $endgroup$



                Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



                One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assume each shortest is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.



                Assigning the same weight to each pair of starting vertex and destination vertex, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



                enter image description hereThe graph is created by https://graphonline.ru/



                If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



                • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

                • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

                Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing $v_3$ while we must pass $v_5$ to reach $v_6$ by shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example show that dividing by 2 is not the right way to normalize the measurement.









                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 46 mins ago









                Apass.JackApass.Jack

                14.6k1940




                14.6k1940



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108582%2fbetweenness-centrality-formula%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                    How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

                    Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її