Spaces in which all closed sets are regular closed The Next CEO of Stack OverflowA space is regular if each closed set $Z$ is the intersection of all open sets containing $Z$?Examples of topologies in which all open sets are regular?All zero dimensional spaces are completely regular.All finite Baire measures are Closed-regular?On the small first countable regular spacesShow that if $X$ and $Y$ are regular, then so is the product space $Xtimes Y$.Regular spaces and Hausdorff spaceHow to Show that Points and Closed Sets Can be Separated by Closed Sets in a T3 (Regular) SpaceSaturated sets and topological spacesOn regular closed sets which are not open-closed
Yu-Gi-Oh cards in Python 3
Are the names of these months realistic?
How many extra stops do monopods offer for tele photographs?
Getting Stale Gas Out of a Gas Tank w/out Dropping the Tank
Players Circumventing the limitations of Wish
Strange use of "whether ... than ..." in official text
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
What flight has the highest ratio of timezone difference to flight time?
Prepend last line of stdin to entire stdin
Won the lottery - how do I keep the money?
Spaces in which all closed sets are regular closed
AB diagonalizable then BA also diagonalizable
My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?
Audio Conversion With ADS1243
Do scriptures give a method to recognize a truly self-realized person/jivanmukta?
What happened in Rome, when the western empire "fell"?
Does Germany produce more waste than the US?
What was the first Unix version to run on a microcomputer?
What connection does MS Office have to Netscape Navigator?
How to set page number in right side in chapter title page?
Redefining symbol midway through a document
Can this note be analyzed as a non-chord tone?
Expressing the idea of having a very busy time
Is there a reasonable and studied concept of reduction between regular languages?
Spaces in which all closed sets are regular closed
The Next CEO of Stack OverflowA space is regular if each closed set $Z$ is the intersection of all open sets containing $Z$?Examples of topologies in which all open sets are regular?All zero dimensional spaces are completely regular.All finite Baire measures are Closed-regular?On the small first countable regular spacesShow that if $X$ and $Y$ are regular, then so is the product space $Xtimes Y$.Regular spaces and Hausdorff spaceHow to Show that Points and Closed Sets Can be Separated by Closed Sets in a T3 (Regular) SpaceSaturated sets and topological spacesOn regular closed sets which are not open-closed
$begingroup$
I was reading about the regular closed sets. The definition is
Let $X$ be a topological space and $Asubseteq X$. We say that $A$ is a regular closed if $A=textcl(textint(A))$
Then, one question came to my mind: is there a topological space $X$ such that $X$ isn't a discrete space and for that every closed subset of $X$ is a regular closed set?
Obviusly, if $X$ is discrete then every closed set is a regular closed, but, if $X$ isn't discrete, what happens? That example exists?
Thanks in advance.
general-topology examples-counterexamples
$endgroup$
add a comment |
$begingroup$
I was reading about the regular closed sets. The definition is
Let $X$ be a topological space and $Asubseteq X$. We say that $A$ is a regular closed if $A=textcl(textint(A))$
Then, one question came to my mind: is there a topological space $X$ such that $X$ isn't a discrete space and for that every closed subset of $X$ is a regular closed set?
Obviusly, if $X$ is discrete then every closed set is a regular closed, but, if $X$ isn't discrete, what happens? That example exists?
Thanks in advance.
general-topology examples-counterexamples
$endgroup$
add a comment |
$begingroup$
I was reading about the regular closed sets. The definition is
Let $X$ be a topological space and $Asubseteq X$. We say that $A$ is a regular closed if $A=textcl(textint(A))$
Then, one question came to my mind: is there a topological space $X$ such that $X$ isn't a discrete space and for that every closed subset of $X$ is a regular closed set?
Obviusly, if $X$ is discrete then every closed set is a regular closed, but, if $X$ isn't discrete, what happens? That example exists?
Thanks in advance.
general-topology examples-counterexamples
$endgroup$
I was reading about the regular closed sets. The definition is
Let $X$ be a topological space and $Asubseteq X$. We say that $A$ is a regular closed if $A=textcl(textint(A))$
Then, one question came to my mind: is there a topological space $X$ such that $X$ isn't a discrete space and for that every closed subset of $X$ is a regular closed set?
Obviusly, if $X$ is discrete then every closed set is a regular closed, but, if $X$ isn't discrete, what happens? That example exists?
Thanks in advance.
general-topology examples-counterexamples
general-topology examples-counterexamples
edited 30 mins ago
Eric Wofsey
191k14216349
191k14216349
asked 1 hour ago
Carlos JiménezCarlos Jiménez
2,4341621
2,4341621
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)
I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.
So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.
$endgroup$
add a comment |
$begingroup$
You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.
But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.
$endgroup$
$begingroup$
Is there a non trivial example? I don't mind the separation axiom.
$endgroup$
– Carlos Jiménez
57 mins ago
$begingroup$
@CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
$endgroup$
– Moishe Kohan
55 mins ago
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169975%2fspaces-in-which-all-closed-sets-are-regular-closed%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)
I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.
So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.
$endgroup$
add a comment |
$begingroup$
Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)
I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.
So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.
$endgroup$
add a comment |
$begingroup$
Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)
I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.
So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.
$endgroup$
Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)
I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.
So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.
answered 37 mins ago
Eric WofseyEric Wofsey
191k14216349
191k14216349
add a comment |
add a comment |
$begingroup$
You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.
But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.
$endgroup$
$begingroup$
Is there a non trivial example? I don't mind the separation axiom.
$endgroup$
– Carlos Jiménez
57 mins ago
$begingroup$
@CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
$endgroup$
– Moishe Kohan
55 mins ago
add a comment |
$begingroup$
You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.
But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.
$endgroup$
$begingroup$
Is there a non trivial example? I don't mind the separation axiom.
$endgroup$
– Carlos Jiménez
57 mins ago
$begingroup$
@CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
$endgroup$
– Moishe Kohan
55 mins ago
add a comment |
$begingroup$
You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.
But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.
$endgroup$
You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.
But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.
answered 59 mins ago
Moishe KohanMoishe Kohan
48.4k344110
48.4k344110
$begingroup$
Is there a non trivial example? I don't mind the separation axiom.
$endgroup$
– Carlos Jiménez
57 mins ago
$begingroup$
@CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
$endgroup$
– Moishe Kohan
55 mins ago
add a comment |
$begingroup$
Is there a non trivial example? I don't mind the separation axiom.
$endgroup$
– Carlos Jiménez
57 mins ago
$begingroup$
@CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
$endgroup$
– Moishe Kohan
55 mins ago
$begingroup$
Is there a non trivial example? I don't mind the separation axiom.
$endgroup$
– Carlos Jiménez
57 mins ago
$begingroup$
Is there a non trivial example? I don't mind the separation axiom.
$endgroup$
– Carlos Jiménez
57 mins ago
$begingroup$
@CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
$endgroup$
– Moishe Kohan
55 mins ago
$begingroup$
@CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
$endgroup$
– Moishe Kohan
55 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169975%2fspaces-in-which-all-closed-sets-are-regular-closed%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown