free fall ellipse or parabola? The Next CEO of Stack OverflowHohmann transfer orbit questionsPractical limits on the size of orbiting objects: could two pebbles orbit each otherCan a very small portion of an ellipse be a parabola?Are retrograde capture orbits “easier” than prograde capture orbits?How does acceleration affect the orbit?Prove that orbits are conic sectionsDo the planets really orbit the Sun?Meaning of the focus of an elliptical orbitHow did people get ellipses of Newton's equations of motion and gravitation?Is spacetime in an ellipse around a massive object, or does it just slope down towards the massive object?
Can Sneak Attack be used when hitting with an improvised weapon?
Easy to read palindrome checker
How did Beeri the Hittite come up with naming his daughter Yehudit?
Reference request: Grassmannian and Plucker coordinates in type B, C, D
Traduction de « Life is a roller coaster »
free fall ellipse or parabola?
Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?
Why don't programming languages automatically manage the synchronous/asynchronous problem?
Computationally populating tables with probability data
What would be the main consequences for a country leaving the WTO?
TikZ: How to fill area with a special pattern?
Audio Conversion With ADS1243
From jafe to El-Guest
Won the lottery - how do I keep the money?
How many extra stops do monopods offer for tele photographs?
Aggressive Under-Indexing and no data for missing index
Players Circumventing the limitations of Wish
Does Germany produce more waste than the US?
"Eavesdropping" vs "Listen in on"
Is it professional to write unrelated content in an almost-empty email?
How to avoid supervisors with prejudiced views?
In the "Harry Potter and the Order of the Phoenix" video game, what potion is used to sabotage Umbridge's speakers?
Prepend last line of stdin to entire stdin
What day is it again?
free fall ellipse or parabola?
The Next CEO of Stack OverflowHohmann transfer orbit questionsPractical limits on the size of orbiting objects: could two pebbles orbit each otherCan a very small portion of an ellipse be a parabola?Are retrograde capture orbits “easier” than prograde capture orbits?How does acceleration affect the orbit?Prove that orbits are conic sectionsDo the planets really orbit the Sun?Meaning of the focus of an elliptical orbitHow did people get ellipses of Newton's equations of motion and gravitation?Is spacetime in an ellipse around a massive object, or does it just slope down towards the massive object?
$begingroup$
Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.
newtonian-mechanics gravity orbital-motion projectile free-fall
$endgroup$
add a comment |
$begingroup$
Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.
newtonian-mechanics gravity orbital-motion projectile free-fall
$endgroup$
add a comment |
$begingroup$
Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.
newtonian-mechanics gravity orbital-motion projectile free-fall
$endgroup$
Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.
newtonian-mechanics gravity orbital-motion projectile free-fall
newtonian-mechanics gravity orbital-motion projectile free-fall
edited 35 mins ago
Aaron Stevens
13.7k42250
13.7k42250
asked 55 mins ago
user56930user56930
174
174
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469780%2ffree-fall-ellipse-or-parabola%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
$endgroup$
add a comment |
$begingroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
$endgroup$
add a comment |
$begingroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
$endgroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
answered 48 mins ago
Cort AmmonCort Ammon
24k34779
24k34779
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469780%2ffree-fall-ellipse-or-parabola%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown