Arithmetic mean geometric mean inequality unclearproving inequality?Practicing the arithmetic-geometric means inequalityArithmetic Mean and Geometric Mean Question, Guidance NeededHow prove Reversing the Arithmetic mean – Geometric mean inequality?Mean Value Theorem and Inequality.Using arithmetic mean>geometric meanNesbitt's Inequality $fracab+c+fracbc+a+fracca+bgeqfrac32$Problem in Arithmetic Mean - Geometric Mean inequalityProving Cauchy-Schwarz with Arithmetic Geometric meanInequality involving a kind of Harmonic mean

How to run a prison with the smallest amount of guards?

Is the destination of a commercial flight important for the pilot?

How do scammers retract money, while you can’t?

Purchasing a ticket for someone else in another country?

Why escape if the_content isnt?

Is `x >> pure y` equivalent to `liftM (const y) x`

What is the intuitive meaning of having a linear relationship between the logs of two variables?

System.debug(JSON.Serialize(o)) Not longer shows full string

What can we do to stop prior company from asking us questions?

How do I rename a Linux host without needing to reboot for the rename to take effect?

Why does indent disappear in lists?

Why not increase contact surface when reentering the atmosphere?

Why, precisely, is argon used in neutrino experiments?

Crossing the line between justified force and brutality

How does buying out courses with grant money work?

How to check is there any negative term in a large list?

Pole-zeros of a real-valued causal FIR system

Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?

Is there a problem with hiding "forgot password" until it's needed?

How does it work when somebody invests in my business?

How to Reset Passwords on Multiple Websites Easily?

A Rare Riley Riddle

How to be diplomatic in refusing to write code that breaches the privacy of our users

Go Pregnant or Go Home



Arithmetic mean geometric mean inequality unclear


proving inequality?Practicing the arithmetic-geometric means inequalityArithmetic Mean and Geometric Mean Question, Guidance NeededHow prove Reversing the Arithmetic mean – Geometric mean inequality?Mean Value Theorem and Inequality.Using arithmetic mean>geometric meanNesbitt's Inequality $fracab+c+fracbc+a+fracca+bgeqfrac32$Problem in Arithmetic Mean - Geometric Mean inequalityProving Cauchy-Schwarz with Arithmetic Geometric meanInequality involving a kind of Harmonic mean













2












$begingroup$


I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me please?










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me please?










    share|cite|improve this question











    $endgroup$














      2












      2








      2


      1



      $begingroup$


      I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me please?










      share|cite|improve this question











      $endgroup$




      I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me please?







      calculus inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 5 hours ago









      Bernard

      123k741117




      123k741117










      asked 5 hours ago









      hopefullyhopefully

      279114




      279114




















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
          $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
          which is the second inequality (modulo capitalization).






          share|cite|improve this answer









          $endgroup$




















            5












            $begingroup$

            The AM-GM inequality for $n$ non-negative values is



            $frac1n(sum_k=1^n x_k)
            ge (prod_k=1^n x_k)^1/n
            $
            .



            This can be rewritten in two ways.



            First,
            by simple algebra,



            $(sum_k=1^n x_i)^n
            ge n^n(prod_k=1^n x_k)
            $
            .



            Second,
            letting $x_k = y_k^n$,
            this becomes



            $frac1n(sum_k=1^n y_k^n)
            ge prod_k=1^n y_k
            $
            .



            It is useful to recognize
            these disguises.






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165273%2farithmetic-mean-geometric-mean-inequality-unclear%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6












              $begingroup$

              If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
              $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
              which is the second inequality (modulo capitalization).






              share|cite|improve this answer









              $endgroup$

















                6












                $begingroup$

                If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
                $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
                which is the second inequality (modulo capitalization).






                share|cite|improve this answer









                $endgroup$















                  6












                  6








                  6





                  $begingroup$

                  If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
                  $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
                  which is the second inequality (modulo capitalization).






                  share|cite|improve this answer









                  $endgroup$



                  If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
                  $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
                  which is the second inequality (modulo capitalization).







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 5 hours ago









                  jgonjgon

                  16k32143




                  16k32143





















                      5












                      $begingroup$

                      The AM-GM inequality for $n$ non-negative values is



                      $frac1n(sum_k=1^n x_k)
                      ge (prod_k=1^n x_k)^1/n
                      $
                      .



                      This can be rewritten in two ways.



                      First,
                      by simple algebra,



                      $(sum_k=1^n x_i)^n
                      ge n^n(prod_k=1^n x_k)
                      $
                      .



                      Second,
                      letting $x_k = y_k^n$,
                      this becomes



                      $frac1n(sum_k=1^n y_k^n)
                      ge prod_k=1^n y_k
                      $
                      .



                      It is useful to recognize
                      these disguises.






                      share|cite|improve this answer









                      $endgroup$

















                        5












                        $begingroup$

                        The AM-GM inequality for $n$ non-negative values is



                        $frac1n(sum_k=1^n x_k)
                        ge (prod_k=1^n x_k)^1/n
                        $
                        .



                        This can be rewritten in two ways.



                        First,
                        by simple algebra,



                        $(sum_k=1^n x_i)^n
                        ge n^n(prod_k=1^n x_k)
                        $
                        .



                        Second,
                        letting $x_k = y_k^n$,
                        this becomes



                        $frac1n(sum_k=1^n y_k^n)
                        ge prod_k=1^n y_k
                        $
                        .



                        It is useful to recognize
                        these disguises.






                        share|cite|improve this answer









                        $endgroup$















                          5












                          5








                          5





                          $begingroup$

                          The AM-GM inequality for $n$ non-negative values is



                          $frac1n(sum_k=1^n x_k)
                          ge (prod_k=1^n x_k)^1/n
                          $
                          .



                          This can be rewritten in two ways.



                          First,
                          by simple algebra,



                          $(sum_k=1^n x_i)^n
                          ge n^n(prod_k=1^n x_k)
                          $
                          .



                          Second,
                          letting $x_k = y_k^n$,
                          this becomes



                          $frac1n(sum_k=1^n y_k^n)
                          ge prod_k=1^n y_k
                          $
                          .



                          It is useful to recognize
                          these disguises.






                          share|cite|improve this answer









                          $endgroup$



                          The AM-GM inequality for $n$ non-negative values is



                          $frac1n(sum_k=1^n x_k)
                          ge (prod_k=1^n x_k)^1/n
                          $
                          .



                          This can be rewritten in two ways.



                          First,
                          by simple algebra,



                          $(sum_k=1^n x_i)^n
                          ge n^n(prod_k=1^n x_k)
                          $
                          .



                          Second,
                          letting $x_k = y_k^n$,
                          this becomes



                          $frac1n(sum_k=1^n y_k^n)
                          ge prod_k=1^n y_k
                          $
                          .



                          It is useful to recognize
                          these disguises.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 5 hours ago









                          marty cohenmarty cohen

                          74.9k549130




                          74.9k549130



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165273%2farithmetic-mean-geometric-mean-inequality-unclear%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                              Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її

                              Перекидне табло Зміст Переваги | Недоліки | Будова | Посилання | Навігаційне менюПерекидне таблоU.S. Patent 3 220 174U.S. Patent 3 501 761Split-flap-display