Find the minimum of $(1+a^2)(1+b^2)(1+c^2)$ where $a,b,cgeq 0$Find the maximum and minimum of $cos xsin ycos z$.How find this minimum $a+b+c+sqrta^2+b^2+sqrtb^2+c^2+sqrta^2+c^2$Olympiad inequality $fraca2a + b + fracb2b + c + fracc2c + a leq 1$.Prove that that $fracx^2a+fracy^2b+fracz^2c geq frac(x+y+z)^2a+b+c.$If $p + q = 1$ prove that for any natural $n, m$ following is true: $(1 - p^n)^m + (1 - q^m)^n ge 1$Inequality problem involving nth harmonic numberCauchy–Schwarz inequality to find minimum of a functionInteresting 3 Variable Inequality for Real NumbersFinding minimum value of $sum a_ib_i$If $a,b,c$ are positive reals satisfying $a+b+c geq abc$, prove that: $a^2+b^2+c^2 geq sqrt 3abc$
How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?
If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?
How to manage monthly salary
Typesetting a double Over Dot on top of a symbol
Does the average primeness of natural numbers tend to zero?
What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?
Are white and non-white police officers equally likely to kill black suspects?
Why is the design of haulage companies so “special”?
New order #4: World
How would photo IDs work for shapeshifters?
A poker game description that does not feel gimmicky
Finding files for which a command fails
Can the Produce Flame cantrip be used to grapple, or as an unarmed strike, in the right circumstances?
Calculate Levenshtein distance between two strings in Python
How to answer pointed "are you quitting" questioning when I don't want them to suspect
I see my dog run
What happens when a metallic dragon and a chromatic dragon mate?
Prime joint compound before latex paint?
Email Account under attack (really) - anything I can do?
Does bootstrapped regression allow for inference?
Information to fellow intern about hiring?
Patience, young "Padovan"
What does "enim et" mean?
Crop image to path created in TikZ?
Find the minimum of $(1+a^2)(1+b^2)(1+c^2)$ where $a,b,cgeq 0$
Find the maximum and minimum of $cos xsin ycos z$.How find this minimum $a+b+c+sqrta^2+b^2+sqrtb^2+c^2+sqrta^2+c^2$Olympiad inequality $fraca2a + b + fracb2b + c + fracc2c + a leq 1$.Prove that that $fracx^2a+fracy^2b+fracz^2c geq frac(x+y+z)^2a+b+c.$If $p + q = 1$ prove that for any natural $n, m$ following is true: $(1 - p^n)^m + (1 - q^m)^n ge 1$Inequality problem involving nth harmonic numberCauchy–Schwarz inequality to find minimum of a functionInteresting 3 Variable Inequality for Real NumbersFinding minimum value of $sum a_ib_i$If $a,b,c$ are positive reals satisfying $a+b+c geq abc$, prove that: $a^2+b^2+c^2 geq sqrt 3abc$
$begingroup$
Find the minimum of:
$$(1+a^2)(1+b^2)(1+c^2) a,b,cgeq 0$$
Knowing that $$ab+bc+ac=27$$
I tried my best using QM-AM-GM inequalities, Cauchy-Schwarz, etc. I tried also to do it with partial derivatives but it's too long. Thank you for your time :)
inequality contest-math
$endgroup$
add a comment |
$begingroup$
Find the minimum of:
$$(1+a^2)(1+b^2)(1+c^2) a,b,cgeq 0$$
Knowing that $$ab+bc+ac=27$$
I tried my best using QM-AM-GM inequalities, Cauchy-Schwarz, etc. I tried also to do it with partial derivatives but it's too long. Thank you for your time :)
inequality contest-math
$endgroup$
$begingroup$
My initial thought: Let $x=ab,y=bc,z=ac$, so that the constraint function is $x+y+z=27$. Then $xy=ab^2 c=b^2 zimplies b^2=x y/z$ and similarly $a^2=xz/y$, $c^2=yz/x$. That makes the objective function more annoying, but it still seems tractable.
$endgroup$
– Semiclassical
12 hours ago
$begingroup$
Can you provide a link to the contest? Or some other evidence that the contest is not currently active. I have no reason to think that it is, but we have this rule :-)
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
@JyrkiLahtonen it's just a simulation of math team national italian olympiad. It's not even an official competition :) .The true Olympiads are in May as you can see here olimpiadi.dm.unibo.it (but the site is italian).
$endgroup$
– Eureka
7 hours ago
$begingroup$
Thanks, Eureka.
$endgroup$
– Jyrki Lahtonen
7 hours ago
add a comment |
$begingroup$
Find the minimum of:
$$(1+a^2)(1+b^2)(1+c^2) a,b,cgeq 0$$
Knowing that $$ab+bc+ac=27$$
I tried my best using QM-AM-GM inequalities, Cauchy-Schwarz, etc. I tried also to do it with partial derivatives but it's too long. Thank you for your time :)
inequality contest-math
$endgroup$
Find the minimum of:
$$(1+a^2)(1+b^2)(1+c^2) a,b,cgeq 0$$
Knowing that $$ab+bc+ac=27$$
I tried my best using QM-AM-GM inequalities, Cauchy-Schwarz, etc. I tried also to do it with partial derivatives but it's too long. Thank you for your time :)
inequality contest-math
inequality contest-math
edited 12 hours ago
YuiTo Cheng
2,3184937
2,3184937
asked 13 hours ago
EurekaEureka
712113
712113
$begingroup$
My initial thought: Let $x=ab,y=bc,z=ac$, so that the constraint function is $x+y+z=27$. Then $xy=ab^2 c=b^2 zimplies b^2=x y/z$ and similarly $a^2=xz/y$, $c^2=yz/x$. That makes the objective function more annoying, but it still seems tractable.
$endgroup$
– Semiclassical
12 hours ago
$begingroup$
Can you provide a link to the contest? Or some other evidence that the contest is not currently active. I have no reason to think that it is, but we have this rule :-)
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
@JyrkiLahtonen it's just a simulation of math team national italian olympiad. It's not even an official competition :) .The true Olympiads are in May as you can see here olimpiadi.dm.unibo.it (but the site is italian).
$endgroup$
– Eureka
7 hours ago
$begingroup$
Thanks, Eureka.
$endgroup$
– Jyrki Lahtonen
7 hours ago
add a comment |
$begingroup$
My initial thought: Let $x=ab,y=bc,z=ac$, so that the constraint function is $x+y+z=27$. Then $xy=ab^2 c=b^2 zimplies b^2=x y/z$ and similarly $a^2=xz/y$, $c^2=yz/x$. That makes the objective function more annoying, but it still seems tractable.
$endgroup$
– Semiclassical
12 hours ago
$begingroup$
Can you provide a link to the contest? Or some other evidence that the contest is not currently active. I have no reason to think that it is, but we have this rule :-)
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
@JyrkiLahtonen it's just a simulation of math team national italian olympiad. It's not even an official competition :) .The true Olympiads are in May as you can see here olimpiadi.dm.unibo.it (but the site is italian).
$endgroup$
– Eureka
7 hours ago
$begingroup$
Thanks, Eureka.
$endgroup$
– Jyrki Lahtonen
7 hours ago
$begingroup$
My initial thought: Let $x=ab,y=bc,z=ac$, so that the constraint function is $x+y+z=27$. Then $xy=ab^2 c=b^2 zimplies b^2=x y/z$ and similarly $a^2=xz/y$, $c^2=yz/x$. That makes the objective function more annoying, but it still seems tractable.
$endgroup$
– Semiclassical
12 hours ago
$begingroup$
My initial thought: Let $x=ab,y=bc,z=ac$, so that the constraint function is $x+y+z=27$. Then $xy=ab^2 c=b^2 zimplies b^2=x y/z$ and similarly $a^2=xz/y$, $c^2=yz/x$. That makes the objective function more annoying, but it still seems tractable.
$endgroup$
– Semiclassical
12 hours ago
$begingroup$
Can you provide a link to the contest? Or some other evidence that the contest is not currently active. I have no reason to think that it is, but we have this rule :-)
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
Can you provide a link to the contest? Or some other evidence that the contest is not currently active. I have no reason to think that it is, but we have this rule :-)
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
@JyrkiLahtonen it's just a simulation of math team national italian olympiad. It's not even an official competition :) .The true Olympiads are in May as you can see here olimpiadi.dm.unibo.it (but the site is italian).
$endgroup$
– Eureka
7 hours ago
$begingroup$
@JyrkiLahtonen it's just a simulation of math team national italian olympiad. It's not even an official competition :) .The true Olympiads are in May as you can see here olimpiadi.dm.unibo.it (but the site is italian).
$endgroup$
– Eureka
7 hours ago
$begingroup$
Thanks, Eureka.
$endgroup$
– Jyrki Lahtonen
7 hours ago
$begingroup$
Thanks, Eureka.
$endgroup$
– Jyrki Lahtonen
7 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We note that $(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$, and $c$. We rewrite it by using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$:
$$beginalign
(1+a^2)(1+b^2)(1+c^2)&=(ab+bc+ca-1)^2+(a+b+c-abc)^2\
&=26^2+(a+b+c-abc)^2geq 26^2=676
endalign$$
where the condition $ab+bc+ac=27$ has been applied.
Hence the minimum is $676$ as soon as we show that there are $a,b,cgeq 0$ such that $ab+bc+ac=27$ and $a+b+c=abc$.
Can you take it from here?
$endgroup$
2
$begingroup$
@Robert Z Amazing! +1
$endgroup$
– Michael Rozenberg
12 hours ago
1
$begingroup$
How had you this idea ? +1
$endgroup$
– Jean Marie
12 hours ago
1
$begingroup$
$(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$ and $c$. Try to rewrite it using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$.
$endgroup$
– Robert Z
12 hours ago
4
$begingroup$
I have a rather direct proof of the identity used by @Robert Z : use twice what is called Diophantes equality $(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2$ (which can be explained as two ways of writing the squared norm ( = squared module) of $(a+ib)(c+id)$)... Or, said in an even simpler way take the squared norm of both sides of relationship $(1+ia)(1+ib)(1+ic)=(1-ab-bc-ca)+(a+b+c-abc)i$.
$endgroup$
– Jean Marie
11 hours ago
1
$begingroup$
Good job. You even managed to convince Michael about the usefulness of elementary symmetric polynomials - something I failed the last time I tried.
$endgroup$
– Jyrki Lahtonen
11 hours ago
|
show 5 more comments
$begingroup$
A simple supplement to Robert's nice answer. With the aid of the following plot I'm sure you all can prove that when $a+b+c=12=abc$ the polynomial
$$(x-a)(x-b)(x-c)=x^3-12x^2+27x-12$$
has three positive zeros $a,b,c$ :-)
$endgroup$
$begingroup$
Adding this because it was not immediately obvious to me how to prove that Robert's lower bound can be achieved. I'm sure there are nice trick ways of doing that. But, it really is simple.
$endgroup$
– Jyrki Lahtonen
11 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179770%2ffind-the-minimum-of-1a21b21c2-where-a-b-c-geq-0%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We note that $(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$, and $c$. We rewrite it by using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$:
$$beginalign
(1+a^2)(1+b^2)(1+c^2)&=(ab+bc+ca-1)^2+(a+b+c-abc)^2\
&=26^2+(a+b+c-abc)^2geq 26^2=676
endalign$$
where the condition $ab+bc+ac=27$ has been applied.
Hence the minimum is $676$ as soon as we show that there are $a,b,cgeq 0$ such that $ab+bc+ac=27$ and $a+b+c=abc$.
Can you take it from here?
$endgroup$
2
$begingroup$
@Robert Z Amazing! +1
$endgroup$
– Michael Rozenberg
12 hours ago
1
$begingroup$
How had you this idea ? +1
$endgroup$
– Jean Marie
12 hours ago
1
$begingroup$
$(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$ and $c$. Try to rewrite it using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$.
$endgroup$
– Robert Z
12 hours ago
4
$begingroup$
I have a rather direct proof of the identity used by @Robert Z : use twice what is called Diophantes equality $(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2$ (which can be explained as two ways of writing the squared norm ( = squared module) of $(a+ib)(c+id)$)... Or, said in an even simpler way take the squared norm of both sides of relationship $(1+ia)(1+ib)(1+ic)=(1-ab-bc-ca)+(a+b+c-abc)i$.
$endgroup$
– Jean Marie
11 hours ago
1
$begingroup$
Good job. You even managed to convince Michael about the usefulness of elementary symmetric polynomials - something I failed the last time I tried.
$endgroup$
– Jyrki Lahtonen
11 hours ago
|
show 5 more comments
$begingroup$
We note that $(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$, and $c$. We rewrite it by using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$:
$$beginalign
(1+a^2)(1+b^2)(1+c^2)&=(ab+bc+ca-1)^2+(a+b+c-abc)^2\
&=26^2+(a+b+c-abc)^2geq 26^2=676
endalign$$
where the condition $ab+bc+ac=27$ has been applied.
Hence the minimum is $676$ as soon as we show that there are $a,b,cgeq 0$ such that $ab+bc+ac=27$ and $a+b+c=abc$.
Can you take it from here?
$endgroup$
2
$begingroup$
@Robert Z Amazing! +1
$endgroup$
– Michael Rozenberg
12 hours ago
1
$begingroup$
How had you this idea ? +1
$endgroup$
– Jean Marie
12 hours ago
1
$begingroup$
$(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$ and $c$. Try to rewrite it using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$.
$endgroup$
– Robert Z
12 hours ago
4
$begingroup$
I have a rather direct proof of the identity used by @Robert Z : use twice what is called Diophantes equality $(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2$ (which can be explained as two ways of writing the squared norm ( = squared module) of $(a+ib)(c+id)$)... Or, said in an even simpler way take the squared norm of both sides of relationship $(1+ia)(1+ib)(1+ic)=(1-ab-bc-ca)+(a+b+c-abc)i$.
$endgroup$
– Jean Marie
11 hours ago
1
$begingroup$
Good job. You even managed to convince Michael about the usefulness of elementary symmetric polynomials - something I failed the last time I tried.
$endgroup$
– Jyrki Lahtonen
11 hours ago
|
show 5 more comments
$begingroup$
We note that $(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$, and $c$. We rewrite it by using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$:
$$beginalign
(1+a^2)(1+b^2)(1+c^2)&=(ab+bc+ca-1)^2+(a+b+c-abc)^2\
&=26^2+(a+b+c-abc)^2geq 26^2=676
endalign$$
where the condition $ab+bc+ac=27$ has been applied.
Hence the minimum is $676$ as soon as we show that there are $a,b,cgeq 0$ such that $ab+bc+ac=27$ and $a+b+c=abc$.
Can you take it from here?
$endgroup$
We note that $(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$, and $c$. We rewrite it by using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$:
$$beginalign
(1+a^2)(1+b^2)(1+c^2)&=(ab+bc+ca-1)^2+(a+b+c-abc)^2\
&=26^2+(a+b+c-abc)^2geq 26^2=676
endalign$$
where the condition $ab+bc+ac=27$ has been applied.
Hence the minimum is $676$ as soon as we show that there are $a,b,cgeq 0$ such that $ab+bc+ac=27$ and $a+b+c=abc$.
Can you take it from here?
edited 12 hours ago
answered 12 hours ago
Robert ZRobert Z
101k1072145
101k1072145
2
$begingroup$
@Robert Z Amazing! +1
$endgroup$
– Michael Rozenberg
12 hours ago
1
$begingroup$
How had you this idea ? +1
$endgroup$
– Jean Marie
12 hours ago
1
$begingroup$
$(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$ and $c$. Try to rewrite it using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$.
$endgroup$
– Robert Z
12 hours ago
4
$begingroup$
I have a rather direct proof of the identity used by @Robert Z : use twice what is called Diophantes equality $(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2$ (which can be explained as two ways of writing the squared norm ( = squared module) of $(a+ib)(c+id)$)... Or, said in an even simpler way take the squared norm of both sides of relationship $(1+ia)(1+ib)(1+ic)=(1-ab-bc-ca)+(a+b+c-abc)i$.
$endgroup$
– Jean Marie
11 hours ago
1
$begingroup$
Good job. You even managed to convince Michael about the usefulness of elementary symmetric polynomials - something I failed the last time I tried.
$endgroup$
– Jyrki Lahtonen
11 hours ago
|
show 5 more comments
2
$begingroup$
@Robert Z Amazing! +1
$endgroup$
– Michael Rozenberg
12 hours ago
1
$begingroup$
How had you this idea ? +1
$endgroup$
– Jean Marie
12 hours ago
1
$begingroup$
$(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$ and $c$. Try to rewrite it using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$.
$endgroup$
– Robert Z
12 hours ago
4
$begingroup$
I have a rather direct proof of the identity used by @Robert Z : use twice what is called Diophantes equality $(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2$ (which can be explained as two ways of writing the squared norm ( = squared module) of $(a+ib)(c+id)$)... Or, said in an even simpler way take the squared norm of both sides of relationship $(1+ia)(1+ib)(1+ic)=(1-ab-bc-ca)+(a+b+c-abc)i$.
$endgroup$
– Jean Marie
11 hours ago
1
$begingroup$
Good job. You even managed to convince Michael about the usefulness of elementary symmetric polynomials - something I failed the last time I tried.
$endgroup$
– Jyrki Lahtonen
11 hours ago
2
2
$begingroup$
@Robert Z Amazing! +1
$endgroup$
– Michael Rozenberg
12 hours ago
$begingroup$
@Robert Z Amazing! +1
$endgroup$
– Michael Rozenberg
12 hours ago
1
1
$begingroup$
How had you this idea ? +1
$endgroup$
– Jean Marie
12 hours ago
$begingroup$
How had you this idea ? +1
$endgroup$
– Jean Marie
12 hours ago
1
1
$begingroup$
$(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$ and $c$. Try to rewrite it using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$.
$endgroup$
– Robert Z
12 hours ago
$begingroup$
$(1+a^2)(1+b^2)(1+c^2)$ is a symmetric function with respect to $a$, $b$ and $c$. Try to rewrite it using the elementary symmetric polynomials $a+b+c$, $ab+bc+ca$ and $abc$.
$endgroup$
– Robert Z
12 hours ago
4
4
$begingroup$
I have a rather direct proof of the identity used by @Robert Z : use twice what is called Diophantes equality $(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2$ (which can be explained as two ways of writing the squared norm ( = squared module) of $(a+ib)(c+id)$)... Or, said in an even simpler way take the squared norm of both sides of relationship $(1+ia)(1+ib)(1+ic)=(1-ab-bc-ca)+(a+b+c-abc)i$.
$endgroup$
– Jean Marie
11 hours ago
$begingroup$
I have a rather direct proof of the identity used by @Robert Z : use twice what is called Diophantes equality $(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2$ (which can be explained as two ways of writing the squared norm ( = squared module) of $(a+ib)(c+id)$)... Or, said in an even simpler way take the squared norm of both sides of relationship $(1+ia)(1+ib)(1+ic)=(1-ab-bc-ca)+(a+b+c-abc)i$.
$endgroup$
– Jean Marie
11 hours ago
1
1
$begingroup$
Good job. You even managed to convince Michael about the usefulness of elementary symmetric polynomials - something I failed the last time I tried.
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
Good job. You even managed to convince Michael about the usefulness of elementary symmetric polynomials - something I failed the last time I tried.
$endgroup$
– Jyrki Lahtonen
11 hours ago
|
show 5 more comments
$begingroup$
A simple supplement to Robert's nice answer. With the aid of the following plot I'm sure you all can prove that when $a+b+c=12=abc$ the polynomial
$$(x-a)(x-b)(x-c)=x^3-12x^2+27x-12$$
has three positive zeros $a,b,c$ :-)
$endgroup$
$begingroup$
Adding this because it was not immediately obvious to me how to prove that Robert's lower bound can be achieved. I'm sure there are nice trick ways of doing that. But, it really is simple.
$endgroup$
– Jyrki Lahtonen
11 hours ago
add a comment |
$begingroup$
A simple supplement to Robert's nice answer. With the aid of the following plot I'm sure you all can prove that when $a+b+c=12=abc$ the polynomial
$$(x-a)(x-b)(x-c)=x^3-12x^2+27x-12$$
has three positive zeros $a,b,c$ :-)
$endgroup$
$begingroup$
Adding this because it was not immediately obvious to me how to prove that Robert's lower bound can be achieved. I'm sure there are nice trick ways of doing that. But, it really is simple.
$endgroup$
– Jyrki Lahtonen
11 hours ago
add a comment |
$begingroup$
A simple supplement to Robert's nice answer. With the aid of the following plot I'm sure you all can prove that when $a+b+c=12=abc$ the polynomial
$$(x-a)(x-b)(x-c)=x^3-12x^2+27x-12$$
has three positive zeros $a,b,c$ :-)
$endgroup$
A simple supplement to Robert's nice answer. With the aid of the following plot I'm sure you all can prove that when $a+b+c=12=abc$ the polynomial
$$(x-a)(x-b)(x-c)=x^3-12x^2+27x-12$$
has three positive zeros $a,b,c$ :-)
answered 11 hours ago
community wiki
Jyrki Lahtonen
$begingroup$
Adding this because it was not immediately obvious to me how to prove that Robert's lower bound can be achieved. I'm sure there are nice trick ways of doing that. But, it really is simple.
$endgroup$
– Jyrki Lahtonen
11 hours ago
add a comment |
$begingroup$
Adding this because it was not immediately obvious to me how to prove that Robert's lower bound can be achieved. I'm sure there are nice trick ways of doing that. But, it really is simple.
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
Adding this because it was not immediately obvious to me how to prove that Robert's lower bound can be achieved. I'm sure there are nice trick ways of doing that. But, it really is simple.
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
Adding this because it was not immediately obvious to me how to prove that Robert's lower bound can be achieved. I'm sure there are nice trick ways of doing that. But, it really is simple.
$endgroup$
– Jyrki Lahtonen
11 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179770%2ffind-the-minimum-of-1a21b21c2-where-a-b-c-geq-0%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
My initial thought: Let $x=ab,y=bc,z=ac$, so that the constraint function is $x+y+z=27$. Then $xy=ab^2 c=b^2 zimplies b^2=x y/z$ and similarly $a^2=xz/y$, $c^2=yz/x$. That makes the objective function more annoying, but it still seems tractable.
$endgroup$
– Semiclassical
12 hours ago
$begingroup$
Can you provide a link to the contest? Or some other evidence that the contest is not currently active. I have no reason to think that it is, but we have this rule :-)
$endgroup$
– Jyrki Lahtonen
11 hours ago
$begingroup$
@JyrkiLahtonen it's just a simulation of math team national italian olympiad. It's not even an official competition :) .The true Olympiads are in May as you can see here olimpiadi.dm.unibo.it (but the site is italian).
$endgroup$
– Eureka
7 hours ago
$begingroup$
Thanks, Eureka.
$endgroup$
– Jyrki Lahtonen
7 hours ago