Combinatorics problem on counting. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Combinatorics and elementary probabilityFinding Number Of Cases,Simple Counting Questionhow many integers are there between 10 000 and 99 999…Coloring integers: there exist 2000 consecutive integers among which 1000 of each colorSubset Counting questionCounting Techniques with CombinatoricsHow many odd $100$-digit numbers such that every two consecutive digits differ by exactly 2 are there?Combinatorics and countCounting elementsCounting the equal-differences of an permutation

A term for a woman complaining about things/begging in a cute/childish way

What do you call the main part of a joke?

Why wasn't DOSKEY integrated with COMMAND.COM?

Performance gap between vector<bool> and array

How do I find out the mythology and history of my Fortress?

How fail-safe is nr as stop bytes?

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

AppleTVs create a chatty alternate WiFi network

Is CEO the "profession" with the most psychopaths?

Should I follow up with an employee I believe overracted to a mistake I made?

Hangman Game with C++

Why should I vote and accept answers?

Is it fair for a professor to grade us on the possession of past papers?

What is a fractional matching?

Why aren't air breathing engines used as small first stages?

Question about debouncing - delay of state change

How often does castling occur in grandmaster games?

Do I really need to have a message in a novel to appeal to readers?

How can I reduce the gap between left and right of cdot with a macro?

Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?

Generate an RGB colour grid

Is there hard evidence that the grant peer review system performs significantly better than random?

What is the topology associated with the algebras for the ultrafilter monad?

How do living politicians protect their readily obtainable signatures from misuse?



Combinatorics problem on counting.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Combinatorics and elementary probabilityFinding Number Of Cases,Simple Counting Questionhow many integers are there between 10 000 and 99 999…Coloring integers: there exist 2000 consecutive integers among which 1000 of each colorSubset Counting questionCounting Techniques with CombinatoricsHow many odd $100$-digit numbers such that every two consecutive digits differ by exactly 2 are there?Combinatorics and countCounting elementsCounting the equal-differences of an permutation










4












$begingroup$


How many positive integers n are there such that all of the following take place:



1) n has 1000 digits.



2) all of the digits are odd.



3) the absolute value of the difference of any two consecutive (neighboring) digits is equal to 2.



Please help. I don’t even know how to start.










share|cite|improve this question









$endgroup$











  • $begingroup$
    Start with an easier problem: how many two-digit numbers are there? what about three-digit?
    $endgroup$
    – Vasya
    4 hours ago











  • $begingroup$
    I could simply guess the case of two digit numbers. How does it help me prove the general one?
    $endgroup$
    – furfur
    4 hours ago










  • $begingroup$
    You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
    $endgroup$
    – Vasya
    4 hours ago










  • $begingroup$
    For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
    $endgroup$
    – furfur
    4 hours ago






  • 2




    $begingroup$
    Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
    $endgroup$
    – Mike Earnest
    3 hours ago















4












$begingroup$


How many positive integers n are there such that all of the following take place:



1) n has 1000 digits.



2) all of the digits are odd.



3) the absolute value of the difference of any two consecutive (neighboring) digits is equal to 2.



Please help. I don’t even know how to start.










share|cite|improve this question









$endgroup$











  • $begingroup$
    Start with an easier problem: how many two-digit numbers are there? what about three-digit?
    $endgroup$
    – Vasya
    4 hours ago











  • $begingroup$
    I could simply guess the case of two digit numbers. How does it help me prove the general one?
    $endgroup$
    – furfur
    4 hours ago










  • $begingroup$
    You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
    $endgroup$
    – Vasya
    4 hours ago










  • $begingroup$
    For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
    $endgroup$
    – furfur
    4 hours ago






  • 2




    $begingroup$
    Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
    $endgroup$
    – Mike Earnest
    3 hours ago













4












4








4


1



$begingroup$


How many positive integers n are there such that all of the following take place:



1) n has 1000 digits.



2) all of the digits are odd.



3) the absolute value of the difference of any two consecutive (neighboring) digits is equal to 2.



Please help. I don’t even know how to start.










share|cite|improve this question









$endgroup$




How many positive integers n are there such that all of the following take place:



1) n has 1000 digits.



2) all of the digits are odd.



3) the absolute value of the difference of any two consecutive (neighboring) digits is equal to 2.



Please help. I don’t even know how to start.







combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 5 hours ago









furfurfurfur

1119




1119











  • $begingroup$
    Start with an easier problem: how many two-digit numbers are there? what about three-digit?
    $endgroup$
    – Vasya
    4 hours ago











  • $begingroup$
    I could simply guess the case of two digit numbers. How does it help me prove the general one?
    $endgroup$
    – furfur
    4 hours ago










  • $begingroup$
    You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
    $endgroup$
    – Vasya
    4 hours ago










  • $begingroup$
    For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
    $endgroup$
    – furfur
    4 hours ago






  • 2




    $begingroup$
    Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
    $endgroup$
    – Mike Earnest
    3 hours ago
















  • $begingroup$
    Start with an easier problem: how many two-digit numbers are there? what about three-digit?
    $endgroup$
    – Vasya
    4 hours ago











  • $begingroup$
    I could simply guess the case of two digit numbers. How does it help me prove the general one?
    $endgroup$
    – furfur
    4 hours ago










  • $begingroup$
    You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
    $endgroup$
    – Vasya
    4 hours ago










  • $begingroup$
    For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
    $endgroup$
    – furfur
    4 hours ago






  • 2




    $begingroup$
    Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
    $endgroup$
    – Mike Earnest
    3 hours ago















$begingroup$
Start with an easier problem: how many two-digit numbers are there? what about three-digit?
$endgroup$
– Vasya
4 hours ago





$begingroup$
Start with an easier problem: how many two-digit numbers are there? what about three-digit?
$endgroup$
– Vasya
4 hours ago













$begingroup$
I could simply guess the case of two digit numbers. How does it help me prove the general one?
$endgroup$
– furfur
4 hours ago




$begingroup$
I could simply guess the case of two digit numbers. How does it help me prove the general one?
$endgroup$
– furfur
4 hours ago












$begingroup$
You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
$endgroup$
– Vasya
4 hours ago




$begingroup$
You do not need to guess, you can count. How many choices for the first digit do you have? what about the second?
$endgroup$
– Vasya
4 hours ago












$begingroup$
For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
$endgroup$
– furfur
4 hours ago




$begingroup$
For the first digit (call it a1) there are 5 choices. For the second digit at most 2 choices. Either a1-2 or a1+2. But it depends if a1 is greater than 2/ smaller than 8 etc. I’m stuck on this.
$endgroup$
– furfur
4 hours ago




2




2




$begingroup$
Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
$endgroup$
– Mike Earnest
3 hours ago




$begingroup$
Letting $a_m$ be the number of such integers with $m$ digits, then $a_m$ obeys the recurrence $$a_m=4a_m-2-3a_m-4qquad textfor all mge 6.$$ The proof is based on Julian Mejia's answer, along with the Cayley-Hamilton theorem, but perhaps you can give a combinatorial proof of that recurrence, then solve it.
$endgroup$
– Mike Earnest
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



Edit:
We have $$A=left(beginarrayccccc
0&1&0&0&0\
1&0&1&0&0\
0&1&0&1&0\
0&0&1&0&1\
0&0&0&1&0\
endarray
right)$$

So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



$$D=left(beginarrayccccc
-1&0&0&0&0\
0&0&0&0&0\
0&0&1&0&0\
0&0&0&-sqrt3&0\
0&0&0&0&sqrt3\
endarray
right)$$



$$P=left(beginarrayccccc
-1&1&-1&1&1\
1&0&-1&-sqrt3&sqrt3\
0&-1&0&2&2\
-1&0&1&-sqrt3&sqrt3\
1&1&1&1&1\
endarray
right)$$

So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
    $endgroup$
    – Mike Earnest
    3 hours ago


















1












$begingroup$

Here is a OCaml program that computes the number of numbers in term of the size of the number:



type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


let hdStr (s: 'a stream) : 'a =
match s with
| Eos -> failwith "headless stream"
| StrCons (x,_) -> x;;

let tlStr (s : 'a stream) : 'a stream =
match s with
| Eos -> failwith "empty stream"
| StrCons (x, t) -> t ();;



let rec listify (s : 'a stream) (n: int) : 'a list =
if n <= 0 then []
else
match s with
| Eos -> []
| _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

let rec howmanynumber start step=
if step = 0 then 1 else
match start with
|1->howmanynumber 3 (step-1)
|3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
|5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
|7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
|9->howmanynumber 7 (step-1)
|_->failwith "exception error"



let count n=
(howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

let result = thisseq 1


So Based on @Julian solution, the answer is the sum of entries of



$beginbmatrix
0 & 1 & 0 & 0 & 0 \
1 & 0 & 1 & 0 & 0 \
0 & 1 & 0 & 1 & 0 \
0 & 0 & 1 & 0 & 1\
0 & 0 & 0 & 1 & 0 \
endbmatrix^999 * beginbmatrix
1 \
1 \
1 \
1 \
1 \
endbmatrix$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
    $endgroup$
    – furfur
    4 hours ago


















1












$begingroup$

The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
$$
a_n=4a_n-2-3a_n-4.tag2
$$



In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3192709%2fcombinatorics-problem-on-counting%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
    Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



    Edit:
    We have $$A=left(beginarrayccccc
    0&1&0&0&0\
    1&0&1&0&0\
    0&1&0&1&0\
    0&0&1&0&1\
    0&0&0&1&0\
    endarray
    right)$$

    So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



    $$D=left(beginarrayccccc
    -1&0&0&0&0\
    0&0&0&0&0\
    0&0&1&0&0\
    0&0&0&-sqrt3&0\
    0&0&0&0&sqrt3\
    endarray
    right)$$



    $$P=left(beginarrayccccc
    -1&1&-1&1&1\
    1&0&-1&-sqrt3&sqrt3\
    0&-1&0&2&2\
    -1&0&1&-sqrt3&sqrt3\
    1&1&1&1&1\
    endarray
    right)$$

    So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
      $endgroup$
      – Mike Earnest
      3 hours ago















    2












    $begingroup$

    Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
    Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



    Edit:
    We have $$A=left(beginarrayccccc
    0&1&0&0&0\
    1&0&1&0&0\
    0&1&0&1&0\
    0&0&1&0&1\
    0&0&0&1&0\
    endarray
    right)$$

    So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



    $$D=left(beginarrayccccc
    -1&0&0&0&0\
    0&0&0&0&0\
    0&0&1&0&0\
    0&0&0&-sqrt3&0\
    0&0&0&0&sqrt3\
    endarray
    right)$$



    $$P=left(beginarrayccccc
    -1&1&-1&1&1\
    1&0&-1&-sqrt3&sqrt3\
    0&-1&0&2&2\
    -1&0&1&-sqrt3&sqrt3\
    1&1&1&1&1\
    endarray
    right)$$

    So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
      $endgroup$
      – Mike Earnest
      3 hours ago













    2












    2








    2





    $begingroup$

    Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
    Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



    Edit:
    We have $$A=left(beginarrayccccc
    0&1&0&0&0\
    1&0&1&0&0\
    0&1&0&1&0\
    0&0&1&0&1\
    0&0&0&1&0\
    endarray
    right)$$

    So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



    $$D=left(beginarrayccccc
    -1&0&0&0&0\
    0&0&0&0&0\
    0&0&1&0&0\
    0&0&0&-sqrt3&0\
    0&0&0&0&sqrt3\
    endarray
    right)$$



    $$P=left(beginarrayccccc
    -1&1&-1&1&1\
    1&0&-1&-sqrt3&sqrt3\
    0&-1&0&2&2\
    -1&0&1&-sqrt3&sqrt3\
    1&1&1&1&1\
    endarray
    right)$$

    So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.






    share|cite|improve this answer











    $endgroup$



    Define $n_i=2i-1$ (so a bijection between 1,2,3,4,5 with 1,3,5,7,9).
    Consider the 5x5 matrix $A=(a_i,j)$ with $a_i,j=1$ if $n_i$ and $n_j$ differ by 2 and $a_i,j=0$ otherwise. Then, the number of positive integers with "m" digits satisfying your properties is the sum of entries of $A^m-1$. So you want to find the sum of entries of $A^999$. I don't know if this is easy to compute without computers.



    Edit:
    We have $$A=left(beginarrayccccc
    0&1&0&0&0\
    1&0&1&0&0\
    0&1&0&1&0\
    0&0&1&0&1\
    0&0&0&1&0\
    endarray
    right)$$

    So, thanks to @Mike's comment, it shouldn't be difficult to find the entries of $A^999$ we have that $A=PDP^-1$ with



    $$D=left(beginarrayccccc
    -1&0&0&0&0\
    0&0&0&0&0\
    0&0&1&0&0\
    0&0&0&-sqrt3&0\
    0&0&0&0&sqrt3\
    endarray
    right)$$



    $$P=left(beginarrayccccc
    -1&1&-1&1&1\
    1&0&-1&-sqrt3&sqrt3\
    0&-1&0&2&2\
    -1&0&1&-sqrt3&sqrt3\
    1&1&1&1&1\
    endarray
    right)$$

    So, we can compute $A^999=PD^999P^-1$ whose entries will be a linear combination of $(-1)^999, (1)^999, (-sqrt3)^999,(sqrt3)^999$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 1 hour ago

























    answered 3 hours ago









    Julian MejiaJulian Mejia

    64229




    64229







    • 1




      $begingroup$
      It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
      $endgroup$
      – Mike Earnest
      3 hours ago












    • 1




      $begingroup$
      It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
      $endgroup$
      – Mike Earnest
      3 hours ago







    1




    1




    $begingroup$
    It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
    $endgroup$
    – Mike Earnest
    3 hours ago




    $begingroup$
    It shouldn't be too bad to diagonalize $A$. The characteristic polynomial is $lambda^5-4lambda^3+3lambda=lambda(lambda^2-1)(lambda^2-3)$, etc.
    $endgroup$
    – Mike Earnest
    3 hours ago











    1












    $begingroup$

    Here is a OCaml program that computes the number of numbers in term of the size of the number:



    type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


    let hdStr (s: 'a stream) : 'a =
    match s with
    | Eos -> failwith "headless stream"
    | StrCons (x,_) -> x;;

    let tlStr (s : 'a stream) : 'a stream =
    match s with
    | Eos -> failwith "empty stream"
    | StrCons (x, t) -> t ();;



    let rec listify (s : 'a stream) (n: int) : 'a list =
    if n <= 0 then []
    else
    match s with
    | Eos -> []
    | _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

    let rec howmanynumber start step=
    if step = 0 then 1 else
    match start with
    |1->howmanynumber 3 (step-1)
    |3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
    |5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
    |7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
    |9->howmanynumber 7 (step-1)
    |_->failwith "exception error"



    let count n=
    (howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

    let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

    let result = thisseq 1


    So Based on @Julian solution, the answer is the sum of entries of



    $beginbmatrix
    0 & 1 & 0 & 0 & 0 \
    1 & 0 & 1 & 0 & 0 \
    0 & 1 & 0 & 1 & 0 \
    0 & 0 & 1 & 0 & 1\
    0 & 0 & 0 & 1 & 0 \
    endbmatrix^999 * beginbmatrix
    1 \
    1 \
    1 \
    1 \
    1 \
    endbmatrix$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
      $endgroup$
      – furfur
      4 hours ago















    1












    $begingroup$

    Here is a OCaml program that computes the number of numbers in term of the size of the number:



    type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


    let hdStr (s: 'a stream) : 'a =
    match s with
    | Eos -> failwith "headless stream"
    | StrCons (x,_) -> x;;

    let tlStr (s : 'a stream) : 'a stream =
    match s with
    | Eos -> failwith "empty stream"
    | StrCons (x, t) -> t ();;



    let rec listify (s : 'a stream) (n: int) : 'a list =
    if n <= 0 then []
    else
    match s with
    | Eos -> []
    | _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

    let rec howmanynumber start step=
    if step = 0 then 1 else
    match start with
    |1->howmanynumber 3 (step-1)
    |3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
    |5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
    |7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
    |9->howmanynumber 7 (step-1)
    |_->failwith "exception error"



    let count n=
    (howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

    let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

    let result = thisseq 1


    So Based on @Julian solution, the answer is the sum of entries of



    $beginbmatrix
    0 & 1 & 0 & 0 & 0 \
    1 & 0 & 1 & 0 & 0 \
    0 & 1 & 0 & 1 & 0 \
    0 & 0 & 1 & 0 & 1\
    0 & 0 & 0 & 1 & 0 \
    endbmatrix^999 * beginbmatrix
    1 \
    1 \
    1 \
    1 \
    1 \
    endbmatrix$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
      $endgroup$
      – furfur
      4 hours ago













    1












    1








    1





    $begingroup$

    Here is a OCaml program that computes the number of numbers in term of the size of the number:



    type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


    let hdStr (s: 'a stream) : 'a =
    match s with
    | Eos -> failwith "headless stream"
    | StrCons (x,_) -> x;;

    let tlStr (s : 'a stream) : 'a stream =
    match s with
    | Eos -> failwith "empty stream"
    | StrCons (x, t) -> t ();;



    let rec listify (s : 'a stream) (n: int) : 'a list =
    if n <= 0 then []
    else
    match s with
    | Eos -> []
    | _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

    let rec howmanynumber start step=
    if step = 0 then 1 else
    match start with
    |1->howmanynumber 3 (step-1)
    |3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
    |5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
    |7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
    |9->howmanynumber 7 (step-1)
    |_->failwith "exception error"



    let count n=
    (howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

    let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

    let result = thisseq 1


    So Based on @Julian solution, the answer is the sum of entries of



    $beginbmatrix
    0 & 1 & 0 & 0 & 0 \
    1 & 0 & 1 & 0 & 0 \
    0 & 1 & 0 & 1 & 0 \
    0 & 0 & 1 & 0 & 1\
    0 & 0 & 0 & 1 & 0 \
    endbmatrix^999 * beginbmatrix
    1 \
    1 \
    1 \
    1 \
    1 \
    endbmatrix$






    share|cite|improve this answer











    $endgroup$



    Here is a OCaml program that computes the number of numbers in term of the size of the number:



    type 'a stream= Eos| StrCons of 'a * (unit-> 'a stream)


    let hdStr (s: 'a stream) : 'a =
    match s with
    | Eos -> failwith "headless stream"
    | StrCons (x,_) -> x;;

    let tlStr (s : 'a stream) : 'a stream =
    match s with
    | Eos -> failwith "empty stream"
    | StrCons (x, t) -> t ();;



    let rec listify (s : 'a stream) (n: int) : 'a list =
    if n <= 0 then []
    else
    match s with
    | Eos -> []
    | _ -> (hdStr s) :: listify (tlStr s) (n - 1);;

    let rec howmanynumber start step=
    if step = 0 then 1 else
    match start with
    |1->howmanynumber 3 (step-1)
    |3->howmanynumber 1 (step-1) + howmanynumber 5 (step-1)
    |5->howmanynumber 3 (step-1) + howmanynumber 7 (step-1)
    |7->howmanynumber 5 (step-1) + howmanynumber 9 (step-1)
    |9->howmanynumber 7 (step-1)
    |_->failwith "exception error"



    let count n=
    (howmanynumber 1 n)+(howmanynumber 3 n)+(howmanynumber 5 n)+(howmanynumber 7 n)+(howmanynumber 9 n)

    let rec thisseq n = StrCons(count n , fun ()-> thisseq (n+1))

    let result = thisseq 1


    So Based on @Julian solution, the answer is the sum of entries of



    $beginbmatrix
    0 & 1 & 0 & 0 & 0 \
    1 & 0 & 1 & 0 & 0 \
    0 & 1 & 0 & 1 & 0 \
    0 & 0 & 1 & 0 & 1\
    0 & 0 & 0 & 1 & 0 \
    endbmatrix^999 * beginbmatrix
    1 \
    1 \
    1 \
    1 \
    1 \
    endbmatrix$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 3 hours ago

























    answered 4 hours ago









    mathpadawanmathpadawan

    2,175522




    2,175522











    • $begingroup$
      Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
      $endgroup$
      – furfur
      4 hours ago
















    • $begingroup$
      Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
      $endgroup$
      – furfur
      4 hours ago















    $begingroup$
    Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
    $endgroup$
    – furfur
    4 hours ago




    $begingroup$
    Thank you! But it was supposed to be a mathematical proof, since we are on math.stackexchange. Thank you for your effort though!
    $endgroup$
    – furfur
    4 hours ago











    1












    $begingroup$

    The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



    The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
    $$
    a_n=4a_n-2-3a_n-4.tag2
    $$



    In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.






    share|cite|improve this answer











    $endgroup$

















      1












      $begingroup$

      The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



      The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
      $$
      a_n=4a_n-2-3a_n-4.tag2
      $$



      In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.






      share|cite|improve this answer











      $endgroup$















        1












        1








        1





        $begingroup$

        The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



        The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
        $$
        a_n=4a_n-2-3a_n-4.tag2
        $$



        In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.






        share|cite|improve this answer











        $endgroup$



        The text was too lengthy for a comment and aims on finalizing the previous answers and comments, which boil down to a very simple final answer for $nge2$: $$a_n=begincaseshphantom18cdot 3^fracn-22,& ntext even,\14 cdot 3^fracn-32,& ntext odd.endcasestag1$$



        The most simple way to prove $(1)$ is to count directly the number of ways for the cases $n=2,3,4,5$ obtaining $a_n=8,14,24,42$, and then proceed by induction applying the recurrence relation suggested by Mike Earnest on the base of the characteristic polynomial of the matrix introduced by Julian Mejia:
        $$
        a_n=4a_n-2-3a_n-4.tag2
        $$



        In fact the simplicity of the answer suggests that there is possibly a simpler way to prove $(2)$ or even directly $(1)$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 23 mins ago

























        answered 3 hours ago









        useruser

        6,69011031




        6,69011031



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3192709%2fcombinatorics-problem-on-counting%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

            Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її

            Перекидне табло Зміст Переваги | Недоліки | Будова | Посилання | Навігаційне менюПерекидне таблоU.S. Patent 3 220 174U.S. Patent 3 501 761Split-flap-display