Why CLRS example on residual networks does not follows its formula?Why is the complexity of negative-cycle-cancelling $O(V^2AUW)$?CLRS - Maxflow Augmented Flow Lemma 26.1 - don't understand use of def. in proofFord-Fulkerson algorithm clarificationLinear programming formulation of cheapest k-edge path between two nodesWhy is it that the flow value can increased along an augmenting path $p$ in a residual network?Maximum flow with Edmonds–Karp algorithmHow would one construct conjunctively local predicate of order k for checking if a shape is Convex?Equivalence of minimum cost circulation problem and minimum cost max flow problemGiven max-flow determine if edge is in a min-cutWhat is the intuition behind the way of reading off a dual optimal solution from simplex primal tabular in CLRS?
Why is this code 6.5x slower with optimizations enabled?
"You are your self first supporter", a more proper way to say it
Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?
Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).
What typically incentivizes a professor to change jobs to a lower ranking university?
"which" command doesn't work / path of Safari?
How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?
What are these boxed doors outside store fronts in New York?
How to add power-LED to my small amplifier?
Possibly bubble sort algorithm
Is it possible to do 50 km distance without any previous training?
How can I hide my bitcoin transactions to protect anonymity from others?
How to type dʒ symbol (IPA) on Mac?
Should I join office cleaning event for free?
whey we use polarized capacitor?
What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?
Is there a familial term for apples and pears?
Why is the design of haulage companies so “special”?
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
Why don't electron-positron collisions release infinite energy?
How can bays and straits be determined in a procedurally generated map?
Copenhagen passport control - US citizen
XeLaTeX and pdfLaTeX ignore hyphenation
Can I make popcorn with any corn?
Why CLRS example on residual networks does not follows its formula?
Why is the complexity of negative-cycle-cancelling $O(V^2AUW)$?CLRS - Maxflow Augmented Flow Lemma 26.1 - don't understand use of def. in proofFord-Fulkerson algorithm clarificationLinear programming formulation of cheapest k-edge path between two nodesWhy is it that the flow value can increased along an augmenting path $p$ in a residual network?Maximum flow with Edmonds–Karp algorithmHow would one construct conjunctively local predicate of order k for checking if a shape is Convex?Equivalence of minimum cost circulation problem and minimum cost max flow problemGiven max-flow determine if edge is in a min-cutWhat is the intuition behind the way of reading off a dual optimal solution from simplex primal tabular in CLRS?
$begingroup$
I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:
That is:
A flow in a residual network provides a roadmap for adding flow to the
original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
the corresponding residual network $G_f$, we define $f uparrow f'$,
the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
$R$, defined by
$$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
> textif (u,v) $in$ E \ 0 & textotherwise endcases$$
How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
If we follow the formula, it must have a flow 5:
$8 + 5 - 8 = 5$
algorithms network-flow
$endgroup$
add a comment |
$begingroup$
I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:
That is:
A flow in a residual network provides a roadmap for adding flow to the
original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
the corresponding residual network $G_f$, we define $f uparrow f'$,
the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
$R$, defined by
$$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
> textif (u,v) $in$ E \ 0 & textotherwise endcases$$
How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
If we follow the formula, it must have a flow 5:
$8 + 5 - 8 = 5$
algorithms network-flow
$endgroup$
add a comment |
$begingroup$
I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:
That is:
A flow in a residual network provides a roadmap for adding flow to the
original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
the corresponding residual network $G_f$, we define $f uparrow f'$,
the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
$R$, defined by
$$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
> textif (u,v) $in$ E \ 0 & textotherwise endcases$$
How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
If we follow the formula, it must have a flow 5:
$8 + 5 - 8 = 5$
algorithms network-flow
$endgroup$
I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:
That is:
A flow in a residual network provides a roadmap for adding flow to the
original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
the corresponding residual network $G_f$, we define $f uparrow f'$,
the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
$R$, defined by
$$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
> textif (u,v) $in$ E \ 0 & textotherwise endcases$$
How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
If we follow the formula, it must have a flow 5:
$8 + 5 - 8 = 5$
algorithms network-flow
algorithms network-flow
asked 9 hours ago
maksadbekmaksadbek
1185
1185
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.
$endgroup$
add a comment |
$begingroup$
It is explained in part (b) of the caption of Figure 26.4.
The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.
Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
$$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$
$endgroup$
2
$begingroup$
I think you mean $=12$ not $=8$.
$endgroup$
– D.W.♦
7 hours ago
$begingroup$
@D.W. Thanks, corrected.
$endgroup$
– Apass.Jack
11 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106608%2fwhy-clrs-example-on-residual-networks-does-not-follows-its-formula%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.
$endgroup$
add a comment |
$begingroup$
That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.
$endgroup$
add a comment |
$begingroup$
That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.
$endgroup$
That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.
answered 7 hours ago
D.W.♦D.W.
103k12129294
103k12129294
add a comment |
add a comment |
$begingroup$
It is explained in part (b) of the caption of Figure 26.4.
The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.
Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
$$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$
$endgroup$
2
$begingroup$
I think you mean $=12$ not $=8$.
$endgroup$
– D.W.♦
7 hours ago
$begingroup$
@D.W. Thanks, corrected.
$endgroup$
– Apass.Jack
11 mins ago
add a comment |
$begingroup$
It is explained in part (b) of the caption of Figure 26.4.
The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.
Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
$$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$
$endgroup$
2
$begingroup$
I think you mean $=12$ not $=8$.
$endgroup$
– D.W.♦
7 hours ago
$begingroup$
@D.W. Thanks, corrected.
$endgroup$
– Apass.Jack
11 mins ago
add a comment |
$begingroup$
It is explained in part (b) of the caption of Figure 26.4.
The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.
Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
$$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$
$endgroup$
It is explained in part (b) of the caption of Figure 26.4.
The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.
Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
$$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$
edited 7 hours ago
answered 7 hours ago
Apass.JackApass.Jack
14k1940
14k1940
2
$begingroup$
I think you mean $=12$ not $=8$.
$endgroup$
– D.W.♦
7 hours ago
$begingroup$
@D.W. Thanks, corrected.
$endgroup$
– Apass.Jack
11 mins ago
add a comment |
2
$begingroup$
I think you mean $=12$ not $=8$.
$endgroup$
– D.W.♦
7 hours ago
$begingroup$
@D.W. Thanks, corrected.
$endgroup$
– Apass.Jack
11 mins ago
2
2
$begingroup$
I think you mean $=12$ not $=8$.
$endgroup$
– D.W.♦
7 hours ago
$begingroup$
I think you mean $=12$ not $=8$.
$endgroup$
– D.W.♦
7 hours ago
$begingroup$
@D.W. Thanks, corrected.
$endgroup$
– Apass.Jack
11 mins ago
$begingroup$
@D.W. Thanks, corrected.
$endgroup$
– Apass.Jack
11 mins ago
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106608%2fwhy-clrs-example-on-residual-networks-does-not-follows-its-formula%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown