whey we use polarized capacitor?Pulse Plethysmograph HelpAmplifier capacitorsWhy are capacitors with large values are manufactured polarized?Why does capacitor polarity matter?Is it safe to use series polarized capacitors to form non-polarized capacitors to be used for higher rated voltage?Replacement of Tantalum CapacitorUnpolarized Capacitors in place of Polarized onesWhy is this power cable sometimes polarized and sometimes not?Can I use polarized capacitors in a location where they shouldn't be polarized?Non-Polarized Electrolytic Capacitor Replacement

Is there a familial term for apples and pears?

Infinite past with a beginning?

What is the offset in a seaplane's hull?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

What would the Romans have called "sorcery"?

How can bays and straits be determined in a procedurally generated map?

What are these boxed doors outside store fronts in New York?

What defenses are there against being summoned by the Gate spell?

Example of a relative pronoun

What typically incentivizes a professor to change jobs to a lower ranking university?

Could a US political party gain complete control over the government by removing checks & balances?

Modification to Chariots for Heavy Cavalry Analogue for 4-armed race

How to make payment on the internet without leaving a money trail?

Is it possible to make sharp wind that can cut stuff from afar?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Why is the design of haulage companies so “special”?

New order #4: World

I probably found a bug with the sudo apt install function

A Journey Through Space and Time

Schwarzchild Radius of the Universe

Extreme, but not acceptable situation and I can't start the work tomorrow morning

Should I join office cleaning event for free?

Shell script can be run only with sh command

whey we use polarized capacitor?



whey we use polarized capacitor?


Pulse Plethysmograph HelpAmplifier capacitorsWhy are capacitors with large values are manufactured polarized?Why does capacitor polarity matter?Is it safe to use series polarized capacitors to form non-polarized capacitors to be used for higher rated voltage?Replacement of Tantalum CapacitorUnpolarized Capacitors in place of Polarized onesWhy is this power cable sometimes polarized and sometimes not?Can I use polarized capacitors in a location where they shouldn't be polarized?Non-Polarized Electrolytic Capacitor Replacement






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


I want to know is the polarized capacitor has the advantage that they are used in some circuits?
For example, in a schematic of the BISS001 PIR controller IC, in some places, a polarized capacitor is used and in some places a non-polarized capacitor one.
Can I use a non-polarized capacitor with the same voltage and capacitance instead of these polarizing capacitors?



Reference Docs:



1.BISS001 datasheet



2.HC-SR501 PIR MOTION DETECTOR datasheet



3.Grove - PIR Motion Sensor or EasyEDA link




What I've understand from your answers is why the electrolytic capacitors are used, and why these are polarized.
But the designers of this circuit could have used a non-polarized capacitor or even polarized tantalum capacitors. Is it true? As the (Grove - PIR Motion Sensor) module uses polarized tantalum capacitors.



I want to know is the polarized capacitors are being used for circuit protection or is there any other reason(Regardless of the type of capacitor)?
Is there a problem if these capacitors are replaced with non-polarized capacitors in this circuits?



Sorry For My Bad English.









share









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
    $endgroup$
    – Hearth
    5 hours ago










  • $begingroup$
    Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
    $endgroup$
    – Wesley Lee
    4 hours ago










  • $begingroup$
    The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
    $endgroup$
    – analogsystemsrf
    4 hours ago

















2












$begingroup$


I want to know is the polarized capacitor has the advantage that they are used in some circuits?
For example, in a schematic of the BISS001 PIR controller IC, in some places, a polarized capacitor is used and in some places a non-polarized capacitor one.
Can I use a non-polarized capacitor with the same voltage and capacitance instead of these polarizing capacitors?



Reference Docs:



1.BISS001 datasheet



2.HC-SR501 PIR MOTION DETECTOR datasheet



3.Grove - PIR Motion Sensor or EasyEDA link




What I've understand from your answers is why the electrolytic capacitors are used, and why these are polarized.
But the designers of this circuit could have used a non-polarized capacitor or even polarized tantalum capacitors. Is it true? As the (Grove - PIR Motion Sensor) module uses polarized tantalum capacitors.



I want to know is the polarized capacitors are being used for circuit protection or is there any other reason(Regardless of the type of capacitor)?
Is there a problem if these capacitors are replaced with non-polarized capacitors in this circuits?



Sorry For My Bad English.









share









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
    $endgroup$
    – Hearth
    5 hours ago










  • $begingroup$
    Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
    $endgroup$
    – Wesley Lee
    4 hours ago










  • $begingroup$
    The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
    $endgroup$
    – analogsystemsrf
    4 hours ago













2












2








2





$begingroup$


I want to know is the polarized capacitor has the advantage that they are used in some circuits?
For example, in a schematic of the BISS001 PIR controller IC, in some places, a polarized capacitor is used and in some places a non-polarized capacitor one.
Can I use a non-polarized capacitor with the same voltage and capacitance instead of these polarizing capacitors?



Reference Docs:



1.BISS001 datasheet



2.HC-SR501 PIR MOTION DETECTOR datasheet



3.Grove - PIR Motion Sensor or EasyEDA link




What I've understand from your answers is why the electrolytic capacitors are used, and why these are polarized.
But the designers of this circuit could have used a non-polarized capacitor or even polarized tantalum capacitors. Is it true? As the (Grove - PIR Motion Sensor) module uses polarized tantalum capacitors.



I want to know is the polarized capacitors are being used for circuit protection or is there any other reason(Regardless of the type of capacitor)?
Is there a problem if these capacitors are replaced with non-polarized capacitors in this circuits?



Sorry For My Bad English.









share









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I want to know is the polarized capacitor has the advantage that they are used in some circuits?
For example, in a schematic of the BISS001 PIR controller IC, in some places, a polarized capacitor is used and in some places a non-polarized capacitor one.
Can I use a non-polarized capacitor with the same voltage and capacitance instead of these polarizing capacitors?



Reference Docs:



1.BISS001 datasheet



2.HC-SR501 PIR MOTION DETECTOR datasheet



3.Grove - PIR Motion Sensor or EasyEDA link




What I've understand from your answers is why the electrolytic capacitors are used, and why these are polarized.
But the designers of this circuit could have used a non-polarized capacitor or even polarized tantalum capacitors. Is it true? As the (Grove - PIR Motion Sensor) module uses polarized tantalum capacitors.



I want to know is the polarized capacitors are being used for circuit protection or is there any other reason(Regardless of the type of capacitor)?
Is there a problem if these capacitors are replaced with non-polarized capacitors in this circuits?



Sorry For My Bad English.







capacitor circuit-design polarity





share









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share



share








edited 2 hours ago









Dave Tweed

123k9152266




123k9152266






New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









hamid mousavihamid mousavi

112




112




New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
    $endgroup$
    – Hearth
    5 hours ago










  • $begingroup$
    Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
    $endgroup$
    – Wesley Lee
    4 hours ago










  • $begingroup$
    The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
    $endgroup$
    – analogsystemsrf
    4 hours ago
















  • $begingroup$
    It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
    $endgroup$
    – Hearth
    5 hours ago










  • $begingroup$
    Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
    $endgroup$
    – Wesley Lee
    4 hours ago










  • $begingroup$
    The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
    $endgroup$
    – analogsystemsrf
    4 hours ago















$begingroup$
It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
$endgroup$
– Hearth
5 hours ago




$begingroup$
It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
$endgroup$
– Hearth
5 hours ago












$begingroup$
Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
$endgroup$
– Wesley Lee
4 hours ago




$begingroup$
Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
$endgroup$
– Wesley Lee
4 hours ago












$begingroup$
The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
$endgroup$
– analogsystemsrf
4 hours ago




$begingroup$
The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
$endgroup$
– analogsystemsrf
4 hours ago










1 Answer
1






active

oldest

votes


















9












$begingroup$

The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.




The ability to produce high-value capacitors in nonpolarized technologies such as multilayer ceramic means that it is now possible to use them where only a polarized capacitor would have been previously available. There is generally no problem with making this substitution, although you may need to consider some of the quirks of the technology you're switching to.



For example, some high-K (high dielectric constant) ceramics exhibit significant capacitance changes with voltage. This might be acceptable in a coupling or bypass application, but completely unacceptable in a filter design.






share|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431310%2fwhey-we-use-polarized-capacitor%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    9












    $begingroup$

    The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



    Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



    Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.




    The ability to produce high-value capacitors in nonpolarized technologies such as multilayer ceramic means that it is now possible to use them where only a polarized capacitor would have been previously available. There is generally no problem with making this substitution, although you may need to consider some of the quirks of the technology you're switching to.



    For example, some high-K (high dielectric constant) ceramics exhibit significant capacitance changes with voltage. This might be acceptable in a coupling or bypass application, but completely unacceptable in a filter design.






    share|improve this answer











    $endgroup$

















      9












      $begingroup$

      The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



      Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



      Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.




      The ability to produce high-value capacitors in nonpolarized technologies such as multilayer ceramic means that it is now possible to use them where only a polarized capacitor would have been previously available. There is generally no problem with making this substitution, although you may need to consider some of the quirks of the technology you're switching to.



      For example, some high-K (high dielectric constant) ceramics exhibit significant capacitance changes with voltage. This might be acceptable in a coupling or bypass application, but completely unacceptable in a filter design.






      share|improve this answer











      $endgroup$















        9












        9








        9





        $begingroup$

        The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



        Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



        Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.




        The ability to produce high-value capacitors in nonpolarized technologies such as multilayer ceramic means that it is now possible to use them where only a polarized capacitor would have been previously available. There is generally no problem with making this substitution, although you may need to consider some of the quirks of the technology you're switching to.



        For example, some high-K (high dielectric constant) ceramics exhibit significant capacitance changes with voltage. This might be acceptable in a coupling or bypass application, but completely unacceptable in a filter design.






        share|improve this answer











        $endgroup$



        The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



        Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



        Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.




        The ability to produce high-value capacitors in nonpolarized technologies such as multilayer ceramic means that it is now possible to use them where only a polarized capacitor would have been previously available. There is generally no problem with making this substitution, although you may need to consider some of the quirks of the technology you're switching to.



        For example, some high-K (high dielectric constant) ceramics exhibit significant capacitance changes with voltage. This might be acceptable in a coupling or bypass application, but completely unacceptable in a filter design.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 2 hours ago

























        answered 4 hours ago









        Dave TweedDave Tweed

        123k9152266




        123k9152266




















            hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.












            hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.











            hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431310%2fwhey-we-use-polarized-capacitor%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

            Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її

            Перекидне табло Зміст Переваги | Недоліки | Будова | Посилання | Навігаційне менюПерекидне таблоU.S. Patent 3 220 174U.S. Patent 3 501 761Split-flap-display