Proving the given two groups are isomorphic The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbbR,+)$ and $(mathbbC,+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

"... to apply for a visa" or "... and applied for a visa"?

What force causes entropy to increase?

Visa regaring travelling European country

US Healthcare consultation for visitors

What information about me do stores get via my credit card?

Circular reasoning in L'Hopital's rule

Make it rain characters

Is an up-to-date browser secure on an out-of-date OS?

Can the DM override racial traits?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Does Parliament hold absolute power in the UK?

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Was credit for the black hole image misappropriated?

how can a perfect fourth interval be considered either consonant or dissonant?

Keeping a retro style to sci-fi spaceships?

Sub-subscripts in strings cause different spacings than subscripts

What is the padding with red substance inside of steak packaging?

Is there a way to generate uniformly distributed points on a sphere from a fixed amount of random real numbers per point?

How do spell lists change if the party levels up without taking a long rest?

Could an empire control the whole planet with today's comunication methods?

Proving the given two groups are isomorphic

Why doesn't a hydraulic lever violate conservation of energy?

Word to describe a time interval



Proving the given two groups are isomorphic



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbbR,+)$ and $(mathbbC,+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic










1












$begingroup$


So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?










      share|cite|improve this question









      $endgroup$




      So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?







      abstract-algebra group-isomorphism






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      UfomammutUfomammut

      391314




      391314




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = y in mathbbR $ is its kernel.
            If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
            Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
            The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
            Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
              $endgroup$
              – Ufomammut
              34 mins ago











            • $begingroup$
              Yes, that will also work.
              $endgroup$
              – Mayank Mishra
              31 mins ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-two-groups-are-isomorphic%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






                share|cite|improve this answer









                $endgroup$



                The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 42 mins ago









                lEmlEm

                3,4621921




                3,4621921





















                    2












                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = y in mathbbR $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      34 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      31 mins ago















                    2












                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = y in mathbbR $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      34 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      31 mins ago













                    2












                    2








                    2





                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = y in mathbbR $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$



                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = y in mathbbR $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 17 mins ago

























                    answered 36 mins ago









                    Mayank MishraMayank Mishra

                    1068




                    1068











                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      34 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      31 mins ago
















                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      34 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      31 mins ago















                    $begingroup$
                    I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                    $endgroup$
                    – Ufomammut
                    34 mins ago





                    $begingroup$
                    I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                    $endgroup$
                    – Ufomammut
                    34 mins ago













                    $begingroup$
                    Yes, that will also work.
                    $endgroup$
                    – Mayank Mishra
                    31 mins ago




                    $begingroup$
                    Yes, that will also work.
                    $endgroup$
                    – Mayank Mishra
                    31 mins ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-two-groups-are-isomorphic%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                    How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

                    Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її