Transformation of random variables and joint distributionsPlotting confidence intervalsWhat is the PDF of a variable where a parameter is itself a random variable?NProbability not reliability analysis?Mathematica function to calculate equivalent NormalDistribution from a WeibullDistributionPDF for square of Rician random variable?Convolve discrete random variables efficientlyDistribution of Function of Random Sum of Random VariablesSketching Normal Probability Distributions GraphsConstruct Distribution Histogram From Random VariableNormal distribution plot construction

Drawing a topological "handle" with Tikz

How to align and center standalone amsmath equations?

Greco-Roman egalitarianism

Some numbers are more equivalent than others

If a character with the Alert feat rolls a crit fail on their Perception check, are they surprised?

A social experiment. What is the worst that can happen?

What major Native American tribes were around Santa Fe during the late 1850s?

Query about absorption line spectra

THT: What is a squared annular “ring”?

Is there a conventional notation or name for the slip angle?

My friend sent me a screenshot of a transaction hash, but when I search for it I find divergent data. What happened?

MAXDOP Settings for SQL Server 2014

How much character growth crosses the line into breaking the character

Should I stop contributing to retirement accounts?

Flux received by a negative charge

What linear sensor for a keyboard?

Have I saved too much for retirement so far?

Two-sided logarithm inequality

Does the Mind Blank spell prevent the target from being frightened?

Why did the EU agree to delay the Brexit deadline?

How should I respond when I lied about my education and the company finds out through background check?

Can we have a perfect cadence in a minor key?

Did US corporations pay demonstrators in the German demonstrations against article 13?

Why did the HMS Bounty go back to a time when whales are already rare?



Transformation of random variables and joint distributions


Plotting confidence intervalsWhat is the PDF of a variable where a parameter is itself a random variable?NProbability not reliability analysis?Mathematica function to calculate equivalent NormalDistribution from a WeibullDistributionPDF for square of Rician random variable?Convolve discrete random variables efficientlyDistribution of Function of Random Sum of Random VariablesSketching Normal Probability Distributions GraphsConstruct Distribution Histogram From Random VariableNormal distribution plot construction













3












$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    6 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    5 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    1 hour ago















3












$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    6 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    5 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    1 hour ago













3












3








3





$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments







probability-or-statistics






share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 1 hour ago









mjw

9679




9679






New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









Andrea2810Andrea2810

162




162




New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    6 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    5 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    1 hour ago












  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    6 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    5 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    1 hour ago







4




4




$begingroup$
What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
$endgroup$
– JimB
6 hours ago




$begingroup$
What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
$endgroup$
– JimB
6 hours ago












$begingroup$
@JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
$endgroup$
– Andrea2810
5 hours ago





$begingroup$
@JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
$endgroup$
– Andrea2810
5 hours ago













$begingroup$
You need to "index" the variable y or else Mathematica thinks it is a single variable.
$endgroup$
– JimB
1 hour ago




$begingroup$
You need to "index" the variable y or else Mathematica thinks it is a single variable.
$endgroup$
– JimB
1 hour ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    44 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    42 mins ago



















0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    1 hour ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    1 hour ago



















0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193876%2ftransformation-of-random-variables-and-joint-distributions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    44 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    42 mins ago
















2












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    44 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    42 mins ago














2












2








2





$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$



I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$







share|improve this answer














share|improve this answer



share|improve this answer








edited 54 mins ago

























answered 1 hour ago









JimBJimB

18k12863




18k12863











  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    44 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    42 mins ago

















  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    44 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    42 mins ago
















$begingroup$
Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
$endgroup$
– mjw
44 mins ago





$begingroup$
Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
$endgroup$
– mjw
44 mins ago













$begingroup$
@mjw Good. Answers should always be scrutinized and challenged if desired.
$endgroup$
– JimB
42 mins ago





$begingroup$
@mjw Good. Answers should always be scrutinized and challenged if desired.
$endgroup$
– JimB
42 mins ago












0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    1 hour ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    1 hour ago
















0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    1 hour ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    1 hour ago














0












0








0





$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$



Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]






share|improve this answer














share|improve this answer



share|improve this answer








edited 1 hour ago

























answered 3 hours ago









mjwmjw

9679




9679











  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    1 hour ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    1 hour ago

















  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    1 hour ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    1 hour ago
















$begingroup$
I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
$endgroup$
– Andrea2810
2 hours ago





$begingroup$
I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
$endgroup$
– Andrea2810
2 hours ago













$begingroup$
Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
$endgroup$
– mjw
2 hours ago





$begingroup$
Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
$endgroup$
– mjw
2 hours ago













$begingroup$
Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
$endgroup$
– mjw
2 hours ago




$begingroup$
Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
$endgroup$
– mjw
2 hours ago












$begingroup$
Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
$endgroup$
– Andrea2810
1 hour ago




$begingroup$
Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
$endgroup$
– Andrea2810
1 hour ago












$begingroup$
a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
$endgroup$
– mjw
1 hour ago





$begingroup$
a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
$endgroup$
– mjw
1 hour ago












0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago















0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago













0












0








0





$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$



just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.







share|improve this answer














share|improve this answer



share|improve this answer








edited 1 hour ago

























answered 2 hours ago









XminerXminer

19918




19918











  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago
















  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago















$begingroup$
I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
$endgroup$
– mjw
2 hours ago




$begingroup$
I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
$endgroup$
– mjw
2 hours ago












$begingroup$
I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
$endgroup$
– mjw
2 hours ago




$begingroup$
I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
$endgroup$
– mjw
2 hours ago












$begingroup$
Exactly, the two variables are not independent unfortunately
$endgroup$
– Andrea2810
2 hours ago




$begingroup$
Exactly, the two variables are not independent unfortunately
$endgroup$
– Andrea2810
2 hours ago










Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.












Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.











Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193876%2ftransformation-of-random-variables-and-joint-distributions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її