Irreducibility of a simple polynomialShow $x^6 + 1.5x^5 + 3x - 4.5$ is irreducible in $mathbb Q[x]$.Determine whether the polynomial $x^2-12$ in $mathbb Z[x]$ satisfies an Eisenstein criterion for irreducibility over $mathbb Q$Proving Irreducibility of $x^4-16x^3+20x^2+12$ in $mathbb Q[x]$Constructibility of roots of a polynomialEisenstein's criterion for polynomials in Z mod pProving irreducibility; What is this method and what is the logic behind it?Irreducibility of special cyclotomic polynomial.Irreducibility of a Polynomial after a substitutionIrreducibility of Non-monic Quartic Polynomials in Q[x]Irreducible monic polynomial in $mathbbQ[x]$

Why Were Madagascar and New Zealand Discovered So Late?

At which point does a character regain all their Hit Dice?

How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?

Implement the Thanos sorting algorithm

Your magic is very sketchy

Mapping a list into a phase plot

Why is delta-v is the most useful quantity for planning space travel?

What's the purpose of "true" in bash "if sudo true; then"

voltage of sounds of mp3files

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

Can somebody explain Brexit in a few child-proof sentences?

Print name if parameter passed to function

There is only s̶i̶x̶t̶y one place he can be

Go Pregnant or Go Home

How to prove that the query oracle is unitary?

Increase performance creating Mandelbrot set in python

Personal Teleportation as a Weapon

How to be diplomatic in refusing to write code that breaches the privacy of our users

Minimal reference content

How does residential electricity work?

HashMap containsKey() returns false although hashCode() and equals() are true

How do I define a right arrow with bar in LaTeX?

Time travel short story where a man arrives in the late 19th century in a time machine and then sends the machine back into the past

Best way to store options for panels



Irreducibility of a simple polynomial


Show $x^6 + 1.5x^5 + 3x - 4.5$ is irreducible in $mathbb Q[x]$.Determine whether the polynomial $x^2-12$ in $mathbb Z[x]$ satisfies an Eisenstein criterion for irreducibility over $mathbb Q$Proving Irreducibility of $x^4-16x^3+20x^2+12$ in $mathbb Q[x]$Constructibility of roots of a polynomialEisenstein's criterion for polynomials in Z mod pProving irreducibility; What is this method and what is the logic behind it?Irreducibility of special cyclotomic polynomial.Irreducibility of a Polynomial after a substitutionIrreducibility of Non-monic Quartic Polynomials in Q[x]Irreducible monic polynomial in $mathbbQ[x]$













3












$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    1 hour ago
















3












$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    1 hour ago














3












3








3


1



$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$




For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.







abstract-algebra field-theory irreducible-polynomials






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









JonHalesJonHales

520311




520311







  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    1 hour ago













  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    1 hour ago








2




2




$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
1 hour ago





$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
1 hour ago











2 Answers
2






active

oldest

votes


















4












$begingroup$

Notice that we are trying to reduce that polynomial by this way:



$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



We need:



$$2a-b^2=0$$
$$b=sqrt2a$$



But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



Which is also known as Sophie Germain Identity.






share|cite|improve this answer








New contributor




Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
    $endgroup$
    – Sil
    1 hour ago










  • $begingroup$
    @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
    $endgroup$
    – Eureka
    1 hour ago







  • 1




    $begingroup$
    @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
    $endgroup$
    – Ethan MacBrough
    1 hour ago










  • $begingroup$
    @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
    $endgroup$
    – Sil
    1 hour ago


















2












$begingroup$

Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$

and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt2a$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.






    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$












    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      1 hour ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      1 hour ago







    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      1 hour ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      1 hour ago















    4












    $begingroup$

    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt2a$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.






    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$












    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      1 hour ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      1 hour ago







    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      1 hour ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      1 hour ago













    4












    4








    4





    $begingroup$

    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt2a$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.






    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$



    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt2a$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.







    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    share|cite|improve this answer



    share|cite|improve this answer






    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    answered 1 hour ago









    EurekaEureka

    22611




    22611




    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    New contributor





    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.











    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      1 hour ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      1 hour ago







    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      1 hour ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      1 hour ago
















    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      1 hour ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      1 hour ago







    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      1 hour ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      1 hour ago















    $begingroup$
    I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
    $endgroup$
    – Sil
    1 hour ago




    $begingroup$
    I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
    $endgroup$
    – Sil
    1 hour ago












    $begingroup$
    @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
    $endgroup$
    – Eureka
    1 hour ago





    $begingroup$
    @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
    $endgroup$
    – Eureka
    1 hour ago





    1




    1




    $begingroup$
    @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
    $endgroup$
    – Ethan MacBrough
    1 hour ago




    $begingroup$
    @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
    $endgroup$
    – Ethan MacBrough
    1 hour ago












    $begingroup$
    @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
    $endgroup$
    – Sil
    1 hour ago




    $begingroup$
    @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
    $endgroup$
    – Sil
    1 hour ago











    2












    $begingroup$

    Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
    $$
    x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
    (x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
    $$

    and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
      $$
      x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
      (x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
      $$

      and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
        $$
        x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
        (x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
        $$

        and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.






        share|cite|improve this answer









        $endgroup$



        Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
        $$
        x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
        (x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
        $$

        and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        egregegreg

        185k1486206




        185k1486206



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

            How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

            Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її