Do there exist finite commutative rings with identity that are not Bézout rings?Example of finite ring which is not a Bézout ringWhen does a finite ring become a finite field?Does there exist an ordered ring, with $mathbbZ$ as an ordered subring, such that some ring of p-adic integers can be formed as a quotient ring?Characteristic collection of rings?Examples of Commutative Rings with $1$ that are not integral domains besides $mathbb Z/nmathbb Z$?Is there a theory of “rings” with partially defined multiplication?Characterize all finite unital rings with only zero divisorsThere are $10$ commutative rings of order $8$Enumerating finite local commutative rings effectivelyIs there an elementary way to prove that the algebraic integers are a Bézout domain?Does there exist a homomorphism of commutative rings with unit from $mathbbZ[x]/(x^2+3)$ to $mathbbZ[x]/(x^2-x+1)$

Hide Select Output from T-SQL

How to be diplomatic in refusing to write code that breaches the privacy of our users

Can I use my Chinese passport to enter China after I acquired another citizenship?

Do I need a multiple entry visa for a trip UK -> Sweden -> UK?

Will it be accepted, if there is no ''Main Character" stereotype?

Is it correct to write "is not focus on"?

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

Why "be dealt cards" rather than "be dealing cards"?

Generic lambda vs generic function give different behaviour

Can somebody explain Brexit in a few child-proof sentences?

Curses work by shouting - How to avoid collateral damage?

Is there a good way to store credentials outside of a password manager?

Personal Teleportation as a Weapon

How does residential electricity work?

Time travel short story where a man arrives in the late 19th century in a time machine and then sends the machine back into the past

is this a spam?

Lay out the Carpet

Bash method for viewing beginning and end of file

Implement the Thanos sorting algorithm

Teaching indefinite integrals that require special-casing

Applicability of Single Responsibility Principle

What is difference between behavior and behaviour

How do I define a right arrow with bar in LaTeX?

Go Pregnant or Go Home



Do there exist finite commutative rings with identity that are not Bézout rings?


Example of finite ring which is not a Bézout ringWhen does a finite ring become a finite field?Does there exist an ordered ring, with $mathbbZ$ as an ordered subring, such that some ring of p-adic integers can be formed as a quotient ring?Characteristic collection of rings?Examples of Commutative Rings with $1$ that are not integral domains besides $mathbb Z/nmathbb Z$?Is there a theory of “rings” with partially defined multiplication?Characterize all finite unital rings with only zero divisorsThere are $10$ commutative rings of order $8$Enumerating finite local commutative rings effectivelyIs there an elementary way to prove that the algebraic integers are a Bézout domain?Does there exist a homomorphism of commutative rings with unit from $mathbbZ[x]/(x^2+3)$ to $mathbbZ[x]/(x^2-x+1)$













2












$begingroup$


A similar question has been asked before: Example of finite ring which is not a Bézout ring, but has not been answered.



There also seems to be a dearth of resources online regarding this question. Some finite commutative rings that come to mind are $$mathbbZ/nmathbbZ, quadmathbbZ_2timesmathbbZ_2,$$ but all of them are Bézout rings. I was wondering if such rings are even possible, and what such an example of a ring might be.



To be clear, by Bézout ring, I mean a ring where Bézout's identity holds. Danke.










share|cite|improve this question









New contributor




magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    For Bourbaki, a Bézout ring is a unital ring in which finitely generated ideals are principal. Is it equivalent to your definition?
    $endgroup$
    – Bernard
    4 hours ago










  • $begingroup$
    I haven't covered ideals yet in my studies, so I am honestly not sure.
    $endgroup$
    – magikarrrp
    4 hours ago






  • 1




    $begingroup$
    Be careful, the ring $M_n(mathbbF_q)$ is not commutative if $n$ is at least 2.
    $endgroup$
    – Captain Lama
    4 hours ago










  • $begingroup$
    @CaptainLama: good point! I have updated the description
    $endgroup$
    – magikarrrp
    3 hours ago















2












$begingroup$


A similar question has been asked before: Example of finite ring which is not a Bézout ring, but has not been answered.



There also seems to be a dearth of resources online regarding this question. Some finite commutative rings that come to mind are $$mathbbZ/nmathbbZ, quadmathbbZ_2timesmathbbZ_2,$$ but all of them are Bézout rings. I was wondering if such rings are even possible, and what such an example of a ring might be.



To be clear, by Bézout ring, I mean a ring where Bézout's identity holds. Danke.










share|cite|improve this question









New contributor




magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    For Bourbaki, a Bézout ring is a unital ring in which finitely generated ideals are principal. Is it equivalent to your definition?
    $endgroup$
    – Bernard
    4 hours ago










  • $begingroup$
    I haven't covered ideals yet in my studies, so I am honestly not sure.
    $endgroup$
    – magikarrrp
    4 hours ago






  • 1




    $begingroup$
    Be careful, the ring $M_n(mathbbF_q)$ is not commutative if $n$ is at least 2.
    $endgroup$
    – Captain Lama
    4 hours ago










  • $begingroup$
    @CaptainLama: good point! I have updated the description
    $endgroup$
    – magikarrrp
    3 hours ago













2












2








2


1



$begingroup$


A similar question has been asked before: Example of finite ring which is not a Bézout ring, but has not been answered.



There also seems to be a dearth of resources online regarding this question. Some finite commutative rings that come to mind are $$mathbbZ/nmathbbZ, quadmathbbZ_2timesmathbbZ_2,$$ but all of them are Bézout rings. I was wondering if such rings are even possible, and what such an example of a ring might be.



To be clear, by Bézout ring, I mean a ring where Bézout's identity holds. Danke.










share|cite|improve this question









New contributor




magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




A similar question has been asked before: Example of finite ring which is not a Bézout ring, but has not been answered.



There also seems to be a dearth of resources online regarding this question. Some finite commutative rings that come to mind are $$mathbbZ/nmathbbZ, quadmathbbZ_2timesmathbbZ_2,$$ but all of them are Bézout rings. I was wondering if such rings are even possible, and what such an example of a ring might be.



To be clear, by Bézout ring, I mean a ring where Bézout's identity holds. Danke.







abstract-algebra ring-theory finite-fields finite-rings






share|cite|improve this question









New contributor




magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Captain Lama

10.1k1030




10.1k1030






New contributor




magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 4 hours ago









magikarrrpmagikarrrp

112




112




New contributor




magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






magikarrrp is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    For Bourbaki, a Bézout ring is a unital ring in which finitely generated ideals are principal. Is it equivalent to your definition?
    $endgroup$
    – Bernard
    4 hours ago










  • $begingroup$
    I haven't covered ideals yet in my studies, so I am honestly not sure.
    $endgroup$
    – magikarrrp
    4 hours ago






  • 1




    $begingroup$
    Be careful, the ring $M_n(mathbbF_q)$ is not commutative if $n$ is at least 2.
    $endgroup$
    – Captain Lama
    4 hours ago










  • $begingroup$
    @CaptainLama: good point! I have updated the description
    $endgroup$
    – magikarrrp
    3 hours ago












  • 2




    $begingroup$
    For Bourbaki, a Bézout ring is a unital ring in which finitely generated ideals are principal. Is it equivalent to your definition?
    $endgroup$
    – Bernard
    4 hours ago










  • $begingroup$
    I haven't covered ideals yet in my studies, so I am honestly not sure.
    $endgroup$
    – magikarrrp
    4 hours ago






  • 1




    $begingroup$
    Be careful, the ring $M_n(mathbbF_q)$ is not commutative if $n$ is at least 2.
    $endgroup$
    – Captain Lama
    4 hours ago










  • $begingroup$
    @CaptainLama: good point! I have updated the description
    $endgroup$
    – magikarrrp
    3 hours ago







2




2




$begingroup$
For Bourbaki, a Bézout ring is a unital ring in which finitely generated ideals are principal. Is it equivalent to your definition?
$endgroup$
– Bernard
4 hours ago




$begingroup$
For Bourbaki, a Bézout ring is a unital ring in which finitely generated ideals are principal. Is it equivalent to your definition?
$endgroup$
– Bernard
4 hours ago












$begingroup$
I haven't covered ideals yet in my studies, so I am honestly not sure.
$endgroup$
– magikarrrp
4 hours ago




$begingroup$
I haven't covered ideals yet in my studies, so I am honestly not sure.
$endgroup$
– magikarrrp
4 hours ago




1




1




$begingroup$
Be careful, the ring $M_n(mathbbF_q)$ is not commutative if $n$ is at least 2.
$endgroup$
– Captain Lama
4 hours ago




$begingroup$
Be careful, the ring $M_n(mathbbF_q)$ is not commutative if $n$ is at least 2.
$endgroup$
– Captain Lama
4 hours ago












$begingroup$
@CaptainLama: good point! I have updated the description
$endgroup$
– magikarrrp
3 hours ago




$begingroup$
@CaptainLama: good point! I have updated the description
$endgroup$
– magikarrrp
3 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

I will work with the definition of Bézout ring provided by Bernard in the comments. Since every ideal of a finite ring is manifestly finitely generated, this amounts to asking whether there are finite rings which are not principal ideal rings (i.e., rings in which every ideal is principal).



Indeed, there are many examples of such rings. Here is one construction: let $F$ be any finite field you like, let $R = F[X, Y], mathfrakm = langle X, Yrangle$, and put $A = R/mathfrakm^2$. Then $A$ is a finite ring; indeed, it is an $F$-vector space of dimension $3$, with basis $overline1, overlineX, overlineY$, and so has $|F|^3$ elements. However, the ideal $I := mathfrakm/mathfrakm^2$ of $A$ is not principal. There are a number of ways to see this, but the point is that $I$ is $I$-torsion as an $A$-module, so the $A$-module structure on $I$ coincides with the induced $A/I cong R/mathfrakm cong F$-module structure on $I$. Clearly, $I$ is free of rank two as an $F$-module on the classes $overlineX, overlineY$, so $I$ requires two generators as an $A$-module.



Incidentally, $A$ is also a local ring with unique maximal ideal $I$, so this gives an answer to one of the questions in the (unanswered) linked question in your post.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    Since the OP states they are not familiar with ideals, maybe it is useful to give a more ad hoc description of $A$: you can see $A$ as $F^3$ as an additive group, with the product $(x,y,z)cdot (x',y',z') = (xx',xy'+x'y,xz'+x'z)$.
    $endgroup$
    – Captain Lama
    3 hours ago


















1












$begingroup$

Based on your comment to Bernard, I'm fairly sure that this answer will not be helpful to you, since you say that you aren't yet familiar with ideals. However, I have no idea how to approach this question without such notions.



I'm assuming your definition of Bezout ring is the same as that given by Bernard in the comments, that a ring $R$ is a Bezout ring if its finitely generated ideals are principal. Since $R$ is finite, $R$ is a Bezout ring if and only if all of its ideals are principal (since every ideal is finite, and thus finitely generated).



The answer is no.



Let $k$ be a finite field. $V$ a finite dimensional vector space over the field.



Define $R=koplus V$ to be the ring with multiplication $(c,v)cdot (d,w)=(cd,cw+dv)$.



The proper ideals of $R$ are the vector subspaces of $V$, and the proper ideals generated by a single element are the zero and one-dimensional subspaces of $V$. Thus if $V$ is two dimensional, the ideal $V$ is not principal.



Attempting to translate this into more elementary language:



Let $BbbF_p=BbbZ/pBbbZ$ for some prime $p$.



Define $R=BbbF_p^3$, with pointwise addition and multiplication given by $(a,b,c)(d,e,f) = (ad,ae+db,af+dc)$. Then the ideal $(0,*,*)$ (I'm using $*$ to denote allowing that element of the tuple to be anything in the field) is not principal, since the ideal generated by a single element $(a,b,c)$ is either $(0,0,0)$ if $a=b=c=0$, or $R$ if $ane 0$ (since $$(a^-1,-a^-2b,-a^-2c)(a,b,c)=(1,0,0),$$ which is the unit of $R$), or
$$ (0,tb,tc) : tinBbbF_p ,$$
when $a=0$, since
$$(0,b,c)(t,x,y)=(0,tb,tc).$$



This means that the elements $e_1=(0,1,0)$ and $e_2=(0,0,1)$ do not satisfy a Bezout type identity, (though to be honest, it's not entirely what that identity should be when we are not working in a domain).






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I had to go do work after composing most of this, and after posting, I see that there is another answer with a similar strategy. Oh well.
    $endgroup$
    – jgon
    1 hour ago










  • $begingroup$
    Nice answer! I don't really see any problem with the similarity between our two answers, since yours is (as you say) translated into more elementary language that might appeal to the OP. (I elected not to, since, as you point out, I'm not sure what a Bezout identity should be in non-domains.)
    $endgroup$
    – Alex Wertheim
    46 mins ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






magikarrrp is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163889%2fdo-there-exist-finite-commutative-rings-with-identity-that-are-not-b%25c3%25a9zout-rings%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

I will work with the definition of Bézout ring provided by Bernard in the comments. Since every ideal of a finite ring is manifestly finitely generated, this amounts to asking whether there are finite rings which are not principal ideal rings (i.e., rings in which every ideal is principal).



Indeed, there are many examples of such rings. Here is one construction: let $F$ be any finite field you like, let $R = F[X, Y], mathfrakm = langle X, Yrangle$, and put $A = R/mathfrakm^2$. Then $A$ is a finite ring; indeed, it is an $F$-vector space of dimension $3$, with basis $overline1, overlineX, overlineY$, and so has $|F|^3$ elements. However, the ideal $I := mathfrakm/mathfrakm^2$ of $A$ is not principal. There are a number of ways to see this, but the point is that $I$ is $I$-torsion as an $A$-module, so the $A$-module structure on $I$ coincides with the induced $A/I cong R/mathfrakm cong F$-module structure on $I$. Clearly, $I$ is free of rank two as an $F$-module on the classes $overlineX, overlineY$, so $I$ requires two generators as an $A$-module.



Incidentally, $A$ is also a local ring with unique maximal ideal $I$, so this gives an answer to one of the questions in the (unanswered) linked question in your post.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    Since the OP states they are not familiar with ideals, maybe it is useful to give a more ad hoc description of $A$: you can see $A$ as $F^3$ as an additive group, with the product $(x,y,z)cdot (x',y',z') = (xx',xy'+x'y,xz'+x'z)$.
    $endgroup$
    – Captain Lama
    3 hours ago















4












$begingroup$

I will work with the definition of Bézout ring provided by Bernard in the comments. Since every ideal of a finite ring is manifestly finitely generated, this amounts to asking whether there are finite rings which are not principal ideal rings (i.e., rings in which every ideal is principal).



Indeed, there are many examples of such rings. Here is one construction: let $F$ be any finite field you like, let $R = F[X, Y], mathfrakm = langle X, Yrangle$, and put $A = R/mathfrakm^2$. Then $A$ is a finite ring; indeed, it is an $F$-vector space of dimension $3$, with basis $overline1, overlineX, overlineY$, and so has $|F|^3$ elements. However, the ideal $I := mathfrakm/mathfrakm^2$ of $A$ is not principal. There are a number of ways to see this, but the point is that $I$ is $I$-torsion as an $A$-module, so the $A$-module structure on $I$ coincides with the induced $A/I cong R/mathfrakm cong F$-module structure on $I$. Clearly, $I$ is free of rank two as an $F$-module on the classes $overlineX, overlineY$, so $I$ requires two generators as an $A$-module.



Incidentally, $A$ is also a local ring with unique maximal ideal $I$, so this gives an answer to one of the questions in the (unanswered) linked question in your post.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    Since the OP states they are not familiar with ideals, maybe it is useful to give a more ad hoc description of $A$: you can see $A$ as $F^3$ as an additive group, with the product $(x,y,z)cdot (x',y',z') = (xx',xy'+x'y,xz'+x'z)$.
    $endgroup$
    – Captain Lama
    3 hours ago













4












4








4





$begingroup$

I will work with the definition of Bézout ring provided by Bernard in the comments. Since every ideal of a finite ring is manifestly finitely generated, this amounts to asking whether there are finite rings which are not principal ideal rings (i.e., rings in which every ideal is principal).



Indeed, there are many examples of such rings. Here is one construction: let $F$ be any finite field you like, let $R = F[X, Y], mathfrakm = langle X, Yrangle$, and put $A = R/mathfrakm^2$. Then $A$ is a finite ring; indeed, it is an $F$-vector space of dimension $3$, with basis $overline1, overlineX, overlineY$, and so has $|F|^3$ elements. However, the ideal $I := mathfrakm/mathfrakm^2$ of $A$ is not principal. There are a number of ways to see this, but the point is that $I$ is $I$-torsion as an $A$-module, so the $A$-module structure on $I$ coincides with the induced $A/I cong R/mathfrakm cong F$-module structure on $I$. Clearly, $I$ is free of rank two as an $F$-module on the classes $overlineX, overlineY$, so $I$ requires two generators as an $A$-module.



Incidentally, $A$ is also a local ring with unique maximal ideal $I$, so this gives an answer to one of the questions in the (unanswered) linked question in your post.






share|cite|improve this answer











$endgroup$



I will work with the definition of Bézout ring provided by Bernard in the comments. Since every ideal of a finite ring is manifestly finitely generated, this amounts to asking whether there are finite rings which are not principal ideal rings (i.e., rings in which every ideal is principal).



Indeed, there are many examples of such rings. Here is one construction: let $F$ be any finite field you like, let $R = F[X, Y], mathfrakm = langle X, Yrangle$, and put $A = R/mathfrakm^2$. Then $A$ is a finite ring; indeed, it is an $F$-vector space of dimension $3$, with basis $overline1, overlineX, overlineY$, and so has $|F|^3$ elements. However, the ideal $I := mathfrakm/mathfrakm^2$ of $A$ is not principal. There are a number of ways to see this, but the point is that $I$ is $I$-torsion as an $A$-module, so the $A$-module structure on $I$ coincides with the induced $A/I cong R/mathfrakm cong F$-module structure on $I$. Clearly, $I$ is free of rank two as an $F$-module on the classes $overlineX, overlineY$, so $I$ requires two generators as an $A$-module.



Incidentally, $A$ is also a local ring with unique maximal ideal $I$, so this gives an answer to one of the questions in the (unanswered) linked question in your post.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 4 hours ago

























answered 4 hours ago









Alex WertheimAlex Wertheim

16.1k22848




16.1k22848







  • 2




    $begingroup$
    Since the OP states they are not familiar with ideals, maybe it is useful to give a more ad hoc description of $A$: you can see $A$ as $F^3$ as an additive group, with the product $(x,y,z)cdot (x',y',z') = (xx',xy'+x'y,xz'+x'z)$.
    $endgroup$
    – Captain Lama
    3 hours ago












  • 2




    $begingroup$
    Since the OP states they are not familiar with ideals, maybe it is useful to give a more ad hoc description of $A$: you can see $A$ as $F^3$ as an additive group, with the product $(x,y,z)cdot (x',y',z') = (xx',xy'+x'y,xz'+x'z)$.
    $endgroup$
    – Captain Lama
    3 hours ago







2




2




$begingroup$
Since the OP states they are not familiar with ideals, maybe it is useful to give a more ad hoc description of $A$: you can see $A$ as $F^3$ as an additive group, with the product $(x,y,z)cdot (x',y',z') = (xx',xy'+x'y,xz'+x'z)$.
$endgroup$
– Captain Lama
3 hours ago




$begingroup$
Since the OP states they are not familiar with ideals, maybe it is useful to give a more ad hoc description of $A$: you can see $A$ as $F^3$ as an additive group, with the product $(x,y,z)cdot (x',y',z') = (xx',xy'+x'y,xz'+x'z)$.
$endgroup$
– Captain Lama
3 hours ago











1












$begingroup$

Based on your comment to Bernard, I'm fairly sure that this answer will not be helpful to you, since you say that you aren't yet familiar with ideals. However, I have no idea how to approach this question without such notions.



I'm assuming your definition of Bezout ring is the same as that given by Bernard in the comments, that a ring $R$ is a Bezout ring if its finitely generated ideals are principal. Since $R$ is finite, $R$ is a Bezout ring if and only if all of its ideals are principal (since every ideal is finite, and thus finitely generated).



The answer is no.



Let $k$ be a finite field. $V$ a finite dimensional vector space over the field.



Define $R=koplus V$ to be the ring with multiplication $(c,v)cdot (d,w)=(cd,cw+dv)$.



The proper ideals of $R$ are the vector subspaces of $V$, and the proper ideals generated by a single element are the zero and one-dimensional subspaces of $V$. Thus if $V$ is two dimensional, the ideal $V$ is not principal.



Attempting to translate this into more elementary language:



Let $BbbF_p=BbbZ/pBbbZ$ for some prime $p$.



Define $R=BbbF_p^3$, with pointwise addition and multiplication given by $(a,b,c)(d,e,f) = (ad,ae+db,af+dc)$. Then the ideal $(0,*,*)$ (I'm using $*$ to denote allowing that element of the tuple to be anything in the field) is not principal, since the ideal generated by a single element $(a,b,c)$ is either $(0,0,0)$ if $a=b=c=0$, or $R$ if $ane 0$ (since $$(a^-1,-a^-2b,-a^-2c)(a,b,c)=(1,0,0),$$ which is the unit of $R$), or
$$ (0,tb,tc) : tinBbbF_p ,$$
when $a=0$, since
$$(0,b,c)(t,x,y)=(0,tb,tc).$$



This means that the elements $e_1=(0,1,0)$ and $e_2=(0,0,1)$ do not satisfy a Bezout type identity, (though to be honest, it's not entirely what that identity should be when we are not working in a domain).






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I had to go do work after composing most of this, and after posting, I see that there is another answer with a similar strategy. Oh well.
    $endgroup$
    – jgon
    1 hour ago










  • $begingroup$
    Nice answer! I don't really see any problem with the similarity between our two answers, since yours is (as you say) translated into more elementary language that might appeal to the OP. (I elected not to, since, as you point out, I'm not sure what a Bezout identity should be in non-domains.)
    $endgroup$
    – Alex Wertheim
    46 mins ago















1












$begingroup$

Based on your comment to Bernard, I'm fairly sure that this answer will not be helpful to you, since you say that you aren't yet familiar with ideals. However, I have no idea how to approach this question without such notions.



I'm assuming your definition of Bezout ring is the same as that given by Bernard in the comments, that a ring $R$ is a Bezout ring if its finitely generated ideals are principal. Since $R$ is finite, $R$ is a Bezout ring if and only if all of its ideals are principal (since every ideal is finite, and thus finitely generated).



The answer is no.



Let $k$ be a finite field. $V$ a finite dimensional vector space over the field.



Define $R=koplus V$ to be the ring with multiplication $(c,v)cdot (d,w)=(cd,cw+dv)$.



The proper ideals of $R$ are the vector subspaces of $V$, and the proper ideals generated by a single element are the zero and one-dimensional subspaces of $V$. Thus if $V$ is two dimensional, the ideal $V$ is not principal.



Attempting to translate this into more elementary language:



Let $BbbF_p=BbbZ/pBbbZ$ for some prime $p$.



Define $R=BbbF_p^3$, with pointwise addition and multiplication given by $(a,b,c)(d,e,f) = (ad,ae+db,af+dc)$. Then the ideal $(0,*,*)$ (I'm using $*$ to denote allowing that element of the tuple to be anything in the field) is not principal, since the ideal generated by a single element $(a,b,c)$ is either $(0,0,0)$ if $a=b=c=0$, or $R$ if $ane 0$ (since $$(a^-1,-a^-2b,-a^-2c)(a,b,c)=(1,0,0),$$ which is the unit of $R$), or
$$ (0,tb,tc) : tinBbbF_p ,$$
when $a=0$, since
$$(0,b,c)(t,x,y)=(0,tb,tc).$$



This means that the elements $e_1=(0,1,0)$ and $e_2=(0,0,1)$ do not satisfy a Bezout type identity, (though to be honest, it's not entirely what that identity should be when we are not working in a domain).






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I had to go do work after composing most of this, and after posting, I see that there is another answer with a similar strategy. Oh well.
    $endgroup$
    – jgon
    1 hour ago










  • $begingroup$
    Nice answer! I don't really see any problem with the similarity between our two answers, since yours is (as you say) translated into more elementary language that might appeal to the OP. (I elected not to, since, as you point out, I'm not sure what a Bezout identity should be in non-domains.)
    $endgroup$
    – Alex Wertheim
    46 mins ago













1












1








1





$begingroup$

Based on your comment to Bernard, I'm fairly sure that this answer will not be helpful to you, since you say that you aren't yet familiar with ideals. However, I have no idea how to approach this question without such notions.



I'm assuming your definition of Bezout ring is the same as that given by Bernard in the comments, that a ring $R$ is a Bezout ring if its finitely generated ideals are principal. Since $R$ is finite, $R$ is a Bezout ring if and only if all of its ideals are principal (since every ideal is finite, and thus finitely generated).



The answer is no.



Let $k$ be a finite field. $V$ a finite dimensional vector space over the field.



Define $R=koplus V$ to be the ring with multiplication $(c,v)cdot (d,w)=(cd,cw+dv)$.



The proper ideals of $R$ are the vector subspaces of $V$, and the proper ideals generated by a single element are the zero and one-dimensional subspaces of $V$. Thus if $V$ is two dimensional, the ideal $V$ is not principal.



Attempting to translate this into more elementary language:



Let $BbbF_p=BbbZ/pBbbZ$ for some prime $p$.



Define $R=BbbF_p^3$, with pointwise addition and multiplication given by $(a,b,c)(d,e,f) = (ad,ae+db,af+dc)$. Then the ideal $(0,*,*)$ (I'm using $*$ to denote allowing that element of the tuple to be anything in the field) is not principal, since the ideal generated by a single element $(a,b,c)$ is either $(0,0,0)$ if $a=b=c=0$, or $R$ if $ane 0$ (since $$(a^-1,-a^-2b,-a^-2c)(a,b,c)=(1,0,0),$$ which is the unit of $R$), or
$$ (0,tb,tc) : tinBbbF_p ,$$
when $a=0$, since
$$(0,b,c)(t,x,y)=(0,tb,tc).$$



This means that the elements $e_1=(0,1,0)$ and $e_2=(0,0,1)$ do not satisfy a Bezout type identity, (though to be honest, it's not entirely what that identity should be when we are not working in a domain).






share|cite|improve this answer









$endgroup$



Based on your comment to Bernard, I'm fairly sure that this answer will not be helpful to you, since you say that you aren't yet familiar with ideals. However, I have no idea how to approach this question without such notions.



I'm assuming your definition of Bezout ring is the same as that given by Bernard in the comments, that a ring $R$ is a Bezout ring if its finitely generated ideals are principal. Since $R$ is finite, $R$ is a Bezout ring if and only if all of its ideals are principal (since every ideal is finite, and thus finitely generated).



The answer is no.



Let $k$ be a finite field. $V$ a finite dimensional vector space over the field.



Define $R=koplus V$ to be the ring with multiplication $(c,v)cdot (d,w)=(cd,cw+dv)$.



The proper ideals of $R$ are the vector subspaces of $V$, and the proper ideals generated by a single element are the zero and one-dimensional subspaces of $V$. Thus if $V$ is two dimensional, the ideal $V$ is not principal.



Attempting to translate this into more elementary language:



Let $BbbF_p=BbbZ/pBbbZ$ for some prime $p$.



Define $R=BbbF_p^3$, with pointwise addition and multiplication given by $(a,b,c)(d,e,f) = (ad,ae+db,af+dc)$. Then the ideal $(0,*,*)$ (I'm using $*$ to denote allowing that element of the tuple to be anything in the field) is not principal, since the ideal generated by a single element $(a,b,c)$ is either $(0,0,0)$ if $a=b=c=0$, or $R$ if $ane 0$ (since $$(a^-1,-a^-2b,-a^-2c)(a,b,c)=(1,0,0),$$ which is the unit of $R$), or
$$ (0,tb,tc) : tinBbbF_p ,$$
when $a=0$, since
$$(0,b,c)(t,x,y)=(0,tb,tc).$$



This means that the elements $e_1=(0,1,0)$ and $e_2=(0,0,1)$ do not satisfy a Bezout type identity, (though to be honest, it's not entirely what that identity should be when we are not working in a domain).







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 1 hour ago









jgonjgon

15.8k32143




15.8k32143











  • $begingroup$
    I had to go do work after composing most of this, and after posting, I see that there is another answer with a similar strategy. Oh well.
    $endgroup$
    – jgon
    1 hour ago










  • $begingroup$
    Nice answer! I don't really see any problem with the similarity between our two answers, since yours is (as you say) translated into more elementary language that might appeal to the OP. (I elected not to, since, as you point out, I'm not sure what a Bezout identity should be in non-domains.)
    $endgroup$
    – Alex Wertheim
    46 mins ago
















  • $begingroup$
    I had to go do work after composing most of this, and after posting, I see that there is another answer with a similar strategy. Oh well.
    $endgroup$
    – jgon
    1 hour ago










  • $begingroup$
    Nice answer! I don't really see any problem with the similarity between our two answers, since yours is (as you say) translated into more elementary language that might appeal to the OP. (I elected not to, since, as you point out, I'm not sure what a Bezout identity should be in non-domains.)
    $endgroup$
    – Alex Wertheim
    46 mins ago















$begingroup$
I had to go do work after composing most of this, and after posting, I see that there is another answer with a similar strategy. Oh well.
$endgroup$
– jgon
1 hour ago




$begingroup$
I had to go do work after composing most of this, and after posting, I see that there is another answer with a similar strategy. Oh well.
$endgroup$
– jgon
1 hour ago












$begingroup$
Nice answer! I don't really see any problem with the similarity between our two answers, since yours is (as you say) translated into more elementary language that might appeal to the OP. (I elected not to, since, as you point out, I'm not sure what a Bezout identity should be in non-domains.)
$endgroup$
– Alex Wertheim
46 mins ago




$begingroup$
Nice answer! I don't really see any problem with the similarity between our two answers, since yours is (as you say) translated into more elementary language that might appeal to the OP. (I elected not to, since, as you point out, I'm not sure what a Bezout identity should be in non-domains.)
$endgroup$
– Alex Wertheim
46 mins ago










magikarrrp is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















magikarrrp is a new contributor. Be nice, and check out our Code of Conduct.












magikarrrp is a new contributor. Be nice, and check out our Code of Conduct.











magikarrrp is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163889%2fdo-there-exist-finite-commutative-rings-with-identity-that-are-not-b%25c3%25a9zout-rings%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її