An inequality of matrix normIs there a condition for the following consequence?Orthogonal Inner Product Proofprove change of basis matrix is unitarya matrix metricMatrix of non-degenerate product invertible?Prove that there is a $uin V$, such that $<u,v_i>$ is greater than zero, for every $i in 1,..,m$.Inner product of dual basisColumn Spaces and SubsetsProve matrix inequality in inner product spaceInduced inner product on tensor powers.

Multi tool use
Multi tool use

Welcoming 2019 Pi day: How to draw the letter π?

If curse and magic is two sides of the same coin, why the former is forbidden?

Happy pi day, everyone!

Does Mathematica reuse previous computations?

How to change two letters closest to a string and one letter immediately after a string using notepad++

Do the common programs (for example: "ls", "cat") in Linux and BSD come from the same source code?

Do I need to be arrogant to get ahead?

Why did it take so long to abandon sail after steamships were demonstrated?

Opacity of an object in 2.8

how to write formula in word in latex

What approach do we need to follow for projects without a test environment?

Interplanetary conflict, some disease destroys the ability to understand or appreciate music

SOQL: Populate a Literal List in WHERE IN Clause

A sequence that has integer values for prime indexes only:

A limit with limit zero everywhere must be zero somewhere

Can a druid choose the size of its wild shape beast?

What are substitutions for coconut in curry?

How to read the value of this capacitor?

Existence of subset with given Hausdorff dimension

PTIJ: Who should I vote for? (21st Knesset Edition)

Professor being mistaken for a grad student

What is the significance behind "40 days" that often appears in the Bible?

Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible

How to simplify this time periods definition interface?



An inequality of matrix norm


Is there a condition for the following consequence?Orthogonal Inner Product Proofprove change of basis matrix is unitarya matrix metricMatrix of non-degenerate product invertible?Prove that there is a $uin V$, such that $<u,v_i>$ is greater than zero, for every $i in 1,..,m$.Inner product of dual basisColumn Spaces and SubsetsProve matrix inequality in inner product spaceInduced inner product on tensor powers.













3












$begingroup$


Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
$$|T|:=supTv$$ where $|v_V|:=sqrtlangle v,vrangle$ and $|Tv|_W:=sqrtlangle Tv,Tvrangle$.



Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n times n$ unitary matrices. Show that
$$|U_1cdots U_k-V_1cdots V_k| leq sum_i=1^k|U_i-V_i|$$



I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
    $$|T|:=supTv$$ where $|v_V|:=sqrtlangle v,vrangle$ and $|Tv|_W:=sqrtlangle Tv,Tvrangle$.



    Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n times n$ unitary matrices. Show that
    $$|U_1cdots U_k-V_1cdots V_k| leq sum_i=1^k|U_i-V_i|$$



    I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










    share|cite|improve this question











    $endgroup$














      3












      3








      3


      1



      $begingroup$


      Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
      $$|T|:=supTv$$ where $|v_V|:=sqrtlangle v,vrangle$ and $|Tv|_W:=sqrtlangle Tv,Tvrangle$.



      Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n times n$ unitary matrices. Show that
      $$|U_1cdots U_k-V_1cdots V_k| leq sum_i=1^k|U_i-V_i|$$



      I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!










      share|cite|improve this question











      $endgroup$




      Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
      $$|T|:=supTv$$ where $|v_V|:=sqrtlangle v,vrangle$ and $|Tv|_W:=sqrtlangle Tv,Tvrangle$.



      Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n times n$ unitary matrices. Show that
      $$|U_1cdots U_k-V_1cdots V_k| leq sum_i=1^k|U_i-V_i|$$



      I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!







      linear-algebra matrices functional-analysis norm






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      Bernard

      123k741116




      123k741116










      asked 2 hours ago









      bbwbbw

      51739




      51739




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149889%2fan-inequality-of-matrix-norm%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago















          6












          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago













          6












          6








          6





          $begingroup$

          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)






          share|cite|improve this answer











          $endgroup$



          For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
          $$
          beginarrayll
          & ||U_1 U_2 - V_1 V_2||\ \
          = & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
          = &
          || ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
          leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
          endarray
          $$

          (The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_2|| = 1$, so
          $$
          || ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
          $$

          A similar bound obtains for $||V_1 (U_2 - V_2) ||$.



          This should give you enough "building blocks".:)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          avsavs

          3,424513




          3,424513











          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago
















          • $begingroup$
            Thank you so much!
            $endgroup$
            – bbw
            1 hour ago






          • 1




            $begingroup$
            You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
            $endgroup$
            – avs
            1 hour ago















          $begingroup$
          Thank you so much!
          $endgroup$
          – bbw
          1 hour ago




          $begingroup$
          Thank you so much!
          $endgroup$
          – bbw
          1 hour ago




          1




          1




          $begingroup$
          You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
          $endgroup$
          – avs
          1 hour ago




          $begingroup$
          You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
          $endgroup$
          – avs
          1 hour ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149889%2fan-inequality-of-matrix-norm%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          03ZpdOu8zqToG8 rp97OkSiY,294SwpqV,Q G I on6Oa,bnLr6rvtb BItNSWudpcZpUhIt ig,6Ca7igWs74GA8oVThulNaPO3CVkIoBLvO
          6,SsLbTgIGkxrHpJJ9bhftloR2l4MhMwLM1CMo8j2KnOB fUj6soeeQ,RNiqP N q KmpxctPX1n YLWQ

          Popular posts from this blog

          Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її

          Best approach to update all entries in a list that is paginated?Best way to add items to a paginated listChoose Your Country: Best Usability approachUpdate list when a user is viewing the list without annoying themWhen would the best day to update your webpage be?What should happen when I add a Row to a paginated, sorted listShould I adopt infinite scrolling or classical pagination?How to show user that page objects automatically updateWhat is the best location to locate the comments section in a list pageBest way to combine filtering and selecting items in a listWhen one of two inputs must be updated to satisfy a consistency criteria, which should you update (if at all)?

          Буцька Катерина Петрівна Зміст Біографія | Фільмографія | Дублювання та озвучення українською | Дублювання та озвучення російською | Озвучення реклами | Навігаційне менюперевірена109 змінвиправивши або дописавши її