Holes in ElementMesh with ToElementMesh of ImplicitRegion Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?ElementMesh from ImplicitRegion cuts corners of regionLong running ToElementMesh with very “large” domainsProblem with MeshOrderAlteration to create a 2nd order ElementMeshToElementMesh[]3D FEM with holesElementMesh (rendering?) issueMaking good meshesElementMesh from Tetrahedron subdivisionElementMesh from ImplicitRegion cuts corners of regionToElementMesh of Region with HoleUneven distribution of nodes by ToElementMesh[]

How would I use different systems of magic when they are capable of the same effects?

Arriving in Atlanta after US Preclearance in Dublin. Will I go through TSA security in Atlanta to transfer to a connecting flight?

Why does the Cisco show run command not show the full version, while the show version command does?

Rolling Stones Sway guitar solo chord function

How would this chord from "Rocket Man" be analyzed?

Could moose/elk survive in the Amazon forest?

Multiple options vs single option UI

How to translate "red flag" into Spanish?

What is the best way to deal with NPC-NPC combat?

Is it acceptable to use working hours to read general interest books?

Is Diceware more secure than a long passphrase?

Is a 5 watt UHF/VHF handheld considered QRP?

How to use @AuraEnabled base class method in Lightning Component?

How to not starve gigantic beasts

Co-worker works way more than he should

Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.

Passing args from the bash script to the function in the script

Check if a string is entirely made of the same substring

Are all CP/M-80 implementations binary compatible?

Is there any hidden 'W' sound after 'comment' in : Comment est-elle?

Israeli soda type drink

Multiple fireplaces in an apartment building?

Retract an already submitted recommendation letter (written for an undergrad student)

What is the ongoing value of the Kanban board to the developers as opposed to management



Holes in ElementMesh with ToElementMesh of ImplicitRegion



Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?ElementMesh from ImplicitRegion cuts corners of regionLong running ToElementMesh with very “large” domainsProblem with MeshOrderAlteration to create a 2nd order ElementMeshToElementMesh[]3D FEM with holesElementMesh (rendering?) issueMaking good meshesElementMesh from Tetrahedron subdivisionElementMesh from ImplicitRegion cuts corners of regionToElementMesh of Region with HoleUneven distribution of nodes by ToElementMesh[]










3












$begingroup$


I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



Here is the cell (it's just a square),



cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
Graphics[Transparent, EdgeForm[Thick], cell]


and the function,



f[kx_, ky_, n_] := 
Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
0.12, 0., 0., 0.,
0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
0., 0.12, -0.23,
0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
0.12, -0.23,
0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
n]];
Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]


enter image description here



and what the region should look like,



isovalue = 1.29897233417072;
ContourPlot[f[x, y, 4], x, y [Element] cell,
Contours -> isovalue, ColorFunction -> GrayLevel,
PlotPoints -> 100]


enter image description here



This is what I have tried



reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "Continuation"];
RegionPlot[reg]


enter image description here
The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










share|improve this question











$endgroup$
















    3












    $begingroup$


    I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



    Here is the cell (it's just a square),



    cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
    Graphics[Transparent, EdgeForm[Thick], cell]


    and the function,



    f[kx_, ky_, n_] := 
    Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
    0.12, 0., 0., 0.,
    0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
    0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
    0.12, -0.23, 0., 0., 0., -0.23, 0.12,
    0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
    0., 0.12, -0.23,
    0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
    0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
    0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
    0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
    0.12, -0.23,
    0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
    0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
    n]];
    Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]


    enter image description here



    and what the region should look like,



    isovalue = 1.29897233417072;
    ContourPlot[f[x, y, 4], x, y [Element] cell,
    Contours -> isovalue, ColorFunction -> GrayLevel,
    PlotPoints -> 100]


    enter image description here



    This is what I have tried



    reg = ToElementMesh[
    ImplicitRegion[
    f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
    "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
    PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
    "BoundaryMeshGenerator" -> "Continuation"];
    RegionPlot[reg]


    enter image description here
    The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










    share|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



      Here is the cell (it's just a square),



      cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
      Graphics[Transparent, EdgeForm[Thick], cell]


      and the function,



      f[kx_, ky_, n_] := 
      Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
      0.12, 0., 0., 0.,
      0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
      0.12, -0.23, 0., 0., 0., -0.23, 0.12,
      0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
      0., 0.12, -0.23,
      0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
      0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
      0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
      0.12, -0.23,
      0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
      0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
      n]];
      Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]


      enter image description here



      and what the region should look like,



      isovalue = 1.29897233417072;
      ContourPlot[f[x, y, 4], x, y [Element] cell,
      Contours -> isovalue, ColorFunction -> GrayLevel,
      PlotPoints -> 100]


      enter image description here



      This is what I have tried



      reg = ToElementMesh[
      ImplicitRegion[
      f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
      "BoundaryMeshGenerator" -> "Continuation"];
      RegionPlot[reg]


      enter image description here
      The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










      share|improve this question











      $endgroup$




      I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



      Here is the cell (it's just a square),



      cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
      Graphics[Transparent, EdgeForm[Thick], cell]


      and the function,



      f[kx_, ky_, n_] := 
      Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
      0.12, 0., 0., 0.,
      0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
      0.12, -0.23, 0., 0., 0., -0.23, 0.12,
      0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
      0., 0.12, -0.23,
      0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
      0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
      0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
      0.12, -0.23,
      0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
      0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
      n]];
      Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]


      enter image description here



      and what the region should look like,



      isovalue = 1.29897233417072;
      ContourPlot[f[x, y, 4], x, y [Element] cell,
      Contours -> isovalue, ColorFunction -> GrayLevel,
      PlotPoints -> 100]


      enter image description here



      This is what I have tried



      reg = ToElementMesh[
      ImplicitRegion[
      f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
      "BoundaryMeshGenerator" -> "Continuation"];
      RegionPlot[reg]


      enter image description here
      The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.







      plotting finite-element-method mesh implicit






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 51 mins ago









      user21

      21.1k55999




      21.1k55999










      asked 8 hours ago









      jerjorgjerjorg

      874




      874




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



          First we create a high quality Graphics of the region of interest.



          isovalue = 1.29897233417072;
          (* Add some margins to plot range to get connected region. *)
          tolerance = 0.05;
          plot = ContourPlot[
          f[x, y, 4],
          x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
          Contours -> isovalue,
          ColorFunction -> GrayLevel,
          (* We need high quality plot for ImageMesh later. *)
          PlotPoints -> 200,
          Frame -> None
          ]


          Create MeshRegion from Graphics object.



          mreg = ImageMesh[ColorNegate[plot]]


          And convert it to ElementMesh.



          Needs["NDSolve`FEM`"]
          mesh = ToElementMesh[mreg,"MeshOrder"->1]
          (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

          mesh["Wireframe"]


          mesh






          share|improve this answer









          $endgroup$




















            3












            $begingroup$

            Another approach is:



            reg = ToElementMesh[
            ImplicitRegion[
            f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
            "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
            PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
            "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

            reg["Wireframe"]


            enter image description here



            One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






            share|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196970%2fholes-in-elementmesh-with-toelementmesh-of-implicitregion%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



              First we create a high quality Graphics of the region of interest.



              isovalue = 1.29897233417072;
              (* Add some margins to plot range to get connected region. *)
              tolerance = 0.05;
              plot = ContourPlot[
              f[x, y, 4],
              x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
              Contours -> isovalue,
              ColorFunction -> GrayLevel,
              (* We need high quality plot for ImageMesh later. *)
              PlotPoints -> 200,
              Frame -> None
              ]


              Create MeshRegion from Graphics object.



              mreg = ImageMesh[ColorNegate[plot]]


              And convert it to ElementMesh.



              Needs["NDSolve`FEM`"]
              mesh = ToElementMesh[mreg,"MeshOrder"->1]
              (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

              mesh["Wireframe"]


              mesh






              share|improve this answer









              $endgroup$

















                3












                $begingroup$

                I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                First we create a high quality Graphics of the region of interest.



                isovalue = 1.29897233417072;
                (* Add some margins to plot range to get connected region. *)
                tolerance = 0.05;
                plot = ContourPlot[
                f[x, y, 4],
                x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
                Contours -> isovalue,
                ColorFunction -> GrayLevel,
                (* We need high quality plot for ImageMesh later. *)
                PlotPoints -> 200,
                Frame -> None
                ]


                Create MeshRegion from Graphics object.



                mreg = ImageMesh[ColorNegate[plot]]


                And convert it to ElementMesh.



                Needs["NDSolve`FEM`"]
                mesh = ToElementMesh[mreg,"MeshOrder"->1]
                (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

                mesh["Wireframe"]


                mesh






                share|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                  First we create a high quality Graphics of the region of interest.



                  isovalue = 1.29897233417072;
                  (* Add some margins to plot range to get connected region. *)
                  tolerance = 0.05;
                  plot = ContourPlot[
                  f[x, y, 4],
                  x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
                  Contours -> isovalue,
                  ColorFunction -> GrayLevel,
                  (* We need high quality plot for ImageMesh later. *)
                  PlotPoints -> 200,
                  Frame -> None
                  ]


                  Create MeshRegion from Graphics object.



                  mreg = ImageMesh[ColorNegate[plot]]


                  And convert it to ElementMesh.



                  Needs["NDSolve`FEM`"]
                  mesh = ToElementMesh[mreg,"MeshOrder"->1]
                  (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

                  mesh["Wireframe"]


                  mesh






                  share|improve this answer









                  $endgroup$



                  I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                  First we create a high quality Graphics of the region of interest.



                  isovalue = 1.29897233417072;
                  (* Add some margins to plot range to get connected region. *)
                  tolerance = 0.05;
                  plot = ContourPlot[
                  f[x, y, 4],
                  x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
                  Contours -> isovalue,
                  ColorFunction -> GrayLevel,
                  (* We need high quality plot for ImageMesh later. *)
                  PlotPoints -> 200,
                  Frame -> None
                  ]


                  Create MeshRegion from Graphics object.



                  mreg = ImageMesh[ColorNegate[plot]]


                  And convert it to ElementMesh.



                  Needs["NDSolve`FEM`"]
                  mesh = ToElementMesh[mreg,"MeshOrder"->1]
                  (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

                  mesh["Wireframe"]


                  mesh







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  PintiPinti

                  3,95211037




                  3,95211037





















                      3












                      $begingroup$

                      Another approach is:



                      reg = ToElementMesh[
                      ImplicitRegion[
                      f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
                      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                      "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

                      reg["Wireframe"]


                      enter image description here



                      One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                      share|improve this answer









                      $endgroup$

















                        3












                        $begingroup$

                        Another approach is:



                        reg = ToElementMesh[
                        ImplicitRegion[
                        f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
                        "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                        PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                        "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

                        reg["Wireframe"]


                        enter image description here



                        One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                        share|improve this answer









                        $endgroup$















                          3












                          3








                          3





                          $begingroup$

                          Another approach is:



                          reg = ToElementMesh[
                          ImplicitRegion[
                          f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
                          "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                          PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                          "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

                          reg["Wireframe"]


                          enter image description here



                          One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                          share|improve this answer









                          $endgroup$



                          Another approach is:



                          reg = ToElementMesh[
                          ImplicitRegion[
                          f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
                          "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                          PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                          "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

                          reg["Wireframe"]


                          enter image description here



                          One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 36 mins ago









                          user21user21

                          21.1k55999




                          21.1k55999



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196970%2fholes-in-elementmesh-with-toelementmesh-of-implicitregion%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                              Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її

                              Перекидне табло Зміст Переваги | Недоліки | Будова | Посилання | Навігаційне менюПерекидне таблоU.S. Patent 3 220 174U.S. Patent 3 501 761Split-flap-display