Prove that BD bisects angle ABC Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)A geometry problem that involves congruence of triangles.Prove that: $S_XYZgeq frac14S_ABC$Prove that angle ACB > angle ABD.Let $D, E, F$ be the feet of the altitudes from $A, B, C$ in $triangle ABC$. Prove that the perpendicular bisector of $EF$ also bisects $BC$.In the following figure, prove that $AC$ bisects $GH$.In triangle $ABC$ find angle $angle BAC$ given that…Show that the altitude bisects the corresponding angleAngle bisector contains the Nine Point CentreProve sum of angles in problem involving bisectors in a given triangleHow to solve for $angle BDC$ given the information of other angles in the picture

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

Crossing US/Canada Border for less than 24 hours

What do you call the main part of a joke?

What is the difference between a "ranged attack" and a "ranged weapon attack"?

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

What does Turing mean by this statement?

Girl Hackers - Logic Puzzle

What to do with repeated rejections for phd position

Why weren't discrete x86 CPUs ever used in game hardware?

How long can equipment go unused before powering up runs the risk of damage?

Is multiple magic items in one inherently imbalanced?

What would you call this weird metallic apparatus that allows you to lift people?

Do I really need to have a message in a novel to appeal to readers?

Dynamic filling of a region of a polar plot

Co-worker has annoying ringtone

What order were files/directories output in dir?

The test team as an enemy of development? And how can this be avoided?

What initially awakened the Balrog?

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

What does this say in Elvish?

How does light 'choose' between wave and particle behaviour?

How much damage would a cupful of neutron star matter do to the Earth?



Prove that BD bisects angle ABC



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)A geometry problem that involves congruence of triangles.Prove that: $S_XYZgeq frac14S_ABC$Prove that angle ACB > angle ABD.Let $D, E, F$ be the feet of the altitudes from $A, B, C$ in $triangle ABC$. Prove that the perpendicular bisector of $EF$ also bisects $BC$.In the following figure, prove that $AC$ bisects $GH$.In triangle $ABC$ find angle $angle BAC$ given that…Show that the altitude bisects the corresponding angleAngle bisector contains the Nine Point CentreProve sum of angles in problem involving bisectors in a given triangleHow to solve for $angle BDC$ given the information of other angles in the picture










6












$begingroup$



Given that $triangle ABC$ is an isosceles right triangle with $AC=BC$ and angle $ACB=90°$. $D$ is a point on $AC$ and $E$ is on the extension of $BD$ such that $AE$ is perpendicular to $BE$. If $AE=frac12BD$, prove that BD bisects angle $angle ABC$.




I have tried proving triangle $triangle AEB$ and triangle $triangle DCB$ similar but can't do so. After some angle chasing, I arrived at the result that somehow if I prove angle $angle CDB$ to be $67.5°$ then it could be proved. But I failed to do so.enter image description here










share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Start by drawing a diagram and showing all the given information.
    $endgroup$
    – 1123581321
    2 hours ago










  • $begingroup$
    @PushpaKumari just provide a link to your image, someone will be willing to edit it.
    $endgroup$
    – Quang Hoang
    1 hour ago










  • $begingroup$
    To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
    $endgroup$
    – 1123581321
    1 hour ago















6












$begingroup$



Given that $triangle ABC$ is an isosceles right triangle with $AC=BC$ and angle $ACB=90°$. $D$ is a point on $AC$ and $E$ is on the extension of $BD$ such that $AE$ is perpendicular to $BE$. If $AE=frac12BD$, prove that BD bisects angle $angle ABC$.




I have tried proving triangle $triangle AEB$ and triangle $triangle DCB$ similar but can't do so. After some angle chasing, I arrived at the result that somehow if I prove angle $angle CDB$ to be $67.5°$ then it could be proved. But I failed to do so.enter image description here










share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Start by drawing a diagram and showing all the given information.
    $endgroup$
    – 1123581321
    2 hours ago










  • $begingroup$
    @PushpaKumari just provide a link to your image, someone will be willing to edit it.
    $endgroup$
    – Quang Hoang
    1 hour ago










  • $begingroup$
    To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
    $endgroup$
    – 1123581321
    1 hour ago













6












6








6





$begingroup$



Given that $triangle ABC$ is an isosceles right triangle with $AC=BC$ and angle $ACB=90°$. $D$ is a point on $AC$ and $E$ is on the extension of $BD$ such that $AE$ is perpendicular to $BE$. If $AE=frac12BD$, prove that BD bisects angle $angle ABC$.




I have tried proving triangle $triangle AEB$ and triangle $triangle DCB$ similar but can't do so. After some angle chasing, I arrived at the result that somehow if I prove angle $angle CDB$ to be $67.5°$ then it could be proved. But I failed to do so.enter image description here










share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





Given that $triangle ABC$ is an isosceles right triangle with $AC=BC$ and angle $ACB=90°$. $D$ is a point on $AC$ and $E$ is on the extension of $BD$ such that $AE$ is perpendicular to $BE$. If $AE=frac12BD$, prove that BD bisects angle $angle ABC$.




I have tried proving triangle $triangle AEB$ and triangle $triangle DCB$ similar but can't do so. After some angle chasing, I arrived at the result that somehow if I prove angle $angle CDB$ to be $67.5°$ then it could be proved. But I failed to do so.enter image description here







geometry triangles






share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago







Pushpa Kumari













New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Pushpa KumariPushpa Kumari

334




334




New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Start by drawing a diagram and showing all the given information.
    $endgroup$
    – 1123581321
    2 hours ago










  • $begingroup$
    @PushpaKumari just provide a link to your image, someone will be willing to edit it.
    $endgroup$
    – Quang Hoang
    1 hour ago










  • $begingroup$
    To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
    $endgroup$
    – 1123581321
    1 hour ago
















  • $begingroup$
    Start by drawing a diagram and showing all the given information.
    $endgroup$
    – 1123581321
    2 hours ago










  • $begingroup$
    @PushpaKumari just provide a link to your image, someone will be willing to edit it.
    $endgroup$
    – Quang Hoang
    1 hour ago










  • $begingroup$
    To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
    $endgroup$
    – 1123581321
    1 hour ago















$begingroup$
Start by drawing a diagram and showing all the given information.
$endgroup$
– 1123581321
2 hours ago




$begingroup$
Start by drawing a diagram and showing all the given information.
$endgroup$
– 1123581321
2 hours ago












$begingroup$
@PushpaKumari just provide a link to your image, someone will be willing to edit it.
$endgroup$
– Quang Hoang
1 hour ago




$begingroup$
@PushpaKumari just provide a link to your image, someone will be willing to edit it.
$endgroup$
– Quang Hoang
1 hour ago












$begingroup$
To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
$endgroup$
– 1123581321
1 hour ago




$begingroup$
To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
$endgroup$
– 1123581321
1 hour ago










3 Answers
3






active

oldest

votes


















1












$begingroup$

Refer to the figure:



$hspace2cm$enter image description here



From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
$$fracxy=fracy-z2x Rightarrow 2x^2=y^2-zy (1)$$
From the right $Delta BCD$:
$$z^2+y^2=(2x)^2 (2)$$
Now substitute $(1)$ to $(2)$:
$$z^2+y^2=2(y^2-zy) Rightarrow \
(y-z)^2=2z^2 Rightarrow \
y-z=zsqrt2 Rightarrow \
fracy-zz=fracysqrt2y,$$

which is consistent with the angle bisector theorem.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    enter image description here



    Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



    First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



    Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
    Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      A simple geometric solution:



      Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac 12DB=frac 12AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.






      share|cite









      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3194309%2fprove-that-bd-bisects-angle-abc%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Refer to the figure:



        $hspace2cm$enter image description here



        From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
        $$fracxy=fracy-z2x Rightarrow 2x^2=y^2-zy (1)$$
        From the right $Delta BCD$:
        $$z^2+y^2=(2x)^2 (2)$$
        Now substitute $(1)$ to $(2)$:
        $$z^2+y^2=2(y^2-zy) Rightarrow \
        (y-z)^2=2z^2 Rightarrow \
        y-z=zsqrt2 Rightarrow \
        fracy-zz=fracysqrt2y,$$

        which is consistent with the angle bisector theorem.






        share|cite|improve this answer









        $endgroup$

















          1












          $begingroup$

          Refer to the figure:



          $hspace2cm$enter image description here



          From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
          $$fracxy=fracy-z2x Rightarrow 2x^2=y^2-zy (1)$$
          From the right $Delta BCD$:
          $$z^2+y^2=(2x)^2 (2)$$
          Now substitute $(1)$ to $(2)$:
          $$z^2+y^2=2(y^2-zy) Rightarrow \
          (y-z)^2=2z^2 Rightarrow \
          y-z=zsqrt2 Rightarrow \
          fracy-zz=fracysqrt2y,$$

          which is consistent with the angle bisector theorem.






          share|cite|improve this answer









          $endgroup$















            1












            1








            1





            $begingroup$

            Refer to the figure:



            $hspace2cm$enter image description here



            From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
            $$fracxy=fracy-z2x Rightarrow 2x^2=y^2-zy (1)$$
            From the right $Delta BCD$:
            $$z^2+y^2=(2x)^2 (2)$$
            Now substitute $(1)$ to $(2)$:
            $$z^2+y^2=2(y^2-zy) Rightarrow \
            (y-z)^2=2z^2 Rightarrow \
            y-z=zsqrt2 Rightarrow \
            fracy-zz=fracysqrt2y,$$

            which is consistent with the angle bisector theorem.






            share|cite|improve this answer









            $endgroup$



            Refer to the figure:



            $hspace2cm$enter image description here



            From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
            $$fracxy=fracy-z2x Rightarrow 2x^2=y^2-zy (1)$$
            From the right $Delta BCD$:
            $$z^2+y^2=(2x)^2 (2)$$
            Now substitute $(1)$ to $(2)$:
            $$z^2+y^2=2(y^2-zy) Rightarrow \
            (y-z)^2=2z^2 Rightarrow \
            y-z=zsqrt2 Rightarrow \
            fracy-zz=fracysqrt2y,$$

            which is consistent with the angle bisector theorem.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            farruhotafarruhota

            22.3k2942




            22.3k2942





















                1












                $begingroup$

                enter image description here



                Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



                First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



                Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
                Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.






                share|cite|improve this answer









                $endgroup$

















                  1












                  $begingroup$

                  enter image description here



                  Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



                  First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



                  Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
                  Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.






                  share|cite|improve this answer









                  $endgroup$















                    1












                    1








                    1





                    $begingroup$

                    enter image description here



                    Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



                    First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



                    Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
                    Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.






                    share|cite|improve this answer









                    $endgroup$



                    enter image description here



                    Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



                    First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



                    Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
                    Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    Quang HoangQuang Hoang

                    13.3k1233




                    13.3k1233





















                        0












                        $begingroup$

                        A simple geometric solution:



                        Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac 12DB=frac 12AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.






                        share|cite









                        $endgroup$

















                          0












                          $begingroup$

                          A simple geometric solution:



                          Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac 12DB=frac 12AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.






                          share|cite









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            A simple geometric solution:



                            Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac 12DB=frac 12AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.






                            share|cite









                            $endgroup$



                            A simple geometric solution:



                            Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac 12DB=frac 12AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.







                            share|cite












                            share|cite



                            share|cite










                            answered 8 mins ago









                            siroussirous

                            1,7481514




                            1,7481514




















                                Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.












                                Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.











                                Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3194309%2fprove-that-bd-bisects-angle-abc%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                                How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

                                Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її