Number of generators of subgroup Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Torsion subgroupOn the minimal number of generators of a finite groupBound number of generators of a subgroup of a nilpotent group?Minimal number of generators for a finitely generated abelian $p$-groupA question on finitely generated Abelian groups with a minimal number of generatorsFactoring an Abelian groupThe number of internal direct summands of a finitely generated abelian groupFree group generated by two generators is isomorphic to product of two infinite cyclic groupsAlternative proof of the Fundamental Theorem of Abelian Groups??Hungerford Chapter 2 Section 2 Problem 2 WITHOUT using the structure theorem of finite abelian groups

Sally's older brother

How much damage would a cupful of neutron star matter do to the Earth?

Statistical analysis applied to methods coming out of Machine Learning

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

Does the universe have a fixed centre of mass?

Is there a spell that can create a permanent fire?

Is the time—manner—place ordering of adverbials an oversimplification?

How does the body cool itself in a stillsuit?

malloc in main() or malloc in another function: allocating memory for a struct and its members

How could a hydrazine and N2O4 cloud (or it's reactants) show up in weather radar?

systemd and copy (/bin/cp): no such file or directory

Can two people see the same photon?

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

Where and when has Thucydides been studied?

.bashrc alias for a command with fixed second parameter

Keep at all times, the minus sign above aligned with minus sign below

Centre cell vertically in tabularx

newbie Q : How to read an output file in one command line

Inverse square law not accurate for non-point masses?

What is a more techy Technical Writer job title that isn't cutesy or confusing?

An isoperimetric-type inequality inside a cube

How to make an animal which can only breed for a certain number of generations?

Table formatting with tabularx?

Was the pager message from Nick Fury to Captain Marvel unnecessary?



Number of generators of subgroup



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Torsion subgroupOn the minimal number of generators of a finite groupBound number of generators of a subgroup of a nilpotent group?Minimal number of generators for a finitely generated abelian $p$-groupA question on finitely generated Abelian groups with a minimal number of generatorsFactoring an Abelian groupThe number of internal direct summands of a finitely generated abelian groupFree group generated by two generators is isomorphic to product of two infinite cyclic groupsAlternative proof of the Fundamental Theorem of Abelian Groups??Hungerford Chapter 2 Section 2 Problem 2 WITHOUT using the structure theorem of finite abelian groups










1












$begingroup$


I am trying to prove the following.



let $G$ be a finitely generated abelian group, and $H<G$ a subgroup such that there exists a subgroup $K<G$ and we can write $G=H oplus K$. Is it true that the minimal number of generators of H is strictly smaller than the minimal number of generators of $G$?



Clearly if G can not be written as a direct summand of $H$ then this is not true, just consider $G= mathbbZ$ and $H=2mathbbZ$.



I would like to prove it because I believe it can provide a simpler proof for the characterization of finitely generated abelian groups.










share|cite|improve this question











$endgroup$











  • $begingroup$
    $mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
    $endgroup$
    – lulu
    5 hours ago






  • 2




    $begingroup$
    Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
    $endgroup$
    – lulu
    5 hours ago










  • $begingroup$
    Thank you for pointing that out. I will edit to correct it.
    $endgroup$
    – Charles
    5 hours ago















1












$begingroup$


I am trying to prove the following.



let $G$ be a finitely generated abelian group, and $H<G$ a subgroup such that there exists a subgroup $K<G$ and we can write $G=H oplus K$. Is it true that the minimal number of generators of H is strictly smaller than the minimal number of generators of $G$?



Clearly if G can not be written as a direct summand of $H$ then this is not true, just consider $G= mathbbZ$ and $H=2mathbbZ$.



I would like to prove it because I believe it can provide a simpler proof for the characterization of finitely generated abelian groups.










share|cite|improve this question











$endgroup$











  • $begingroup$
    $mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
    $endgroup$
    – lulu
    5 hours ago






  • 2




    $begingroup$
    Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
    $endgroup$
    – lulu
    5 hours ago










  • $begingroup$
    Thank you for pointing that out. I will edit to correct it.
    $endgroup$
    – Charles
    5 hours ago













1












1








1





$begingroup$


I am trying to prove the following.



let $G$ be a finitely generated abelian group, and $H<G$ a subgroup such that there exists a subgroup $K<G$ and we can write $G=H oplus K$. Is it true that the minimal number of generators of H is strictly smaller than the minimal number of generators of $G$?



Clearly if G can not be written as a direct summand of $H$ then this is not true, just consider $G= mathbbZ$ and $H=2mathbbZ$.



I would like to prove it because I believe it can provide a simpler proof for the characterization of finitely generated abelian groups.










share|cite|improve this question











$endgroup$




I am trying to prove the following.



let $G$ be a finitely generated abelian group, and $H<G$ a subgroup such that there exists a subgroup $K<G$ and we can write $G=H oplus K$. Is it true that the minimal number of generators of H is strictly smaller than the minimal number of generators of $G$?



Clearly if G can not be written as a direct summand of $H$ then this is not true, just consider $G= mathbbZ$ and $H=2mathbbZ$.



I would like to prove it because I believe it can provide a simpler proof for the characterization of finitely generated abelian groups.







group-theory abelian-groups






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago







Charles

















asked 5 hours ago









CharlesCharles

582420




582420











  • $begingroup$
    $mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
    $endgroup$
    – lulu
    5 hours ago






  • 2




    $begingroup$
    Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
    $endgroup$
    – lulu
    5 hours ago










  • $begingroup$
    Thank you for pointing that out. I will edit to correct it.
    $endgroup$
    – Charles
    5 hours ago
















  • $begingroup$
    $mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
    $endgroup$
    – lulu
    5 hours ago






  • 2




    $begingroup$
    Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
    $endgroup$
    – lulu
    5 hours ago










  • $begingroup$
    Thank you for pointing that out. I will edit to correct it.
    $endgroup$
    – Charles
    5 hours ago















$begingroup$
$mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
$endgroup$
– lulu
5 hours ago




$begingroup$
$mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
$endgroup$
– lulu
5 hours ago




2




2




$begingroup$
Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
$endgroup$
– lulu
5 hours ago




$begingroup$
Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
$endgroup$
– lulu
5 hours ago












$begingroup$
Thank you for pointing that out. I will edit to correct it.
$endgroup$
– Charles
5 hours ago




$begingroup$
Thank you for pointing that out. I will edit to correct it.
$endgroup$
– Charles
5 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
$$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
and
$$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
However, $0oplusmathbbZ_3$ is generated by $(0,1).$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196206%2fnumber-of-generators-of-subgroup%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
    $$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
    and
    $$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
    However, $0oplusmathbbZ_3$ is generated by $(0,1).$






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
      $$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
      and
      $$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
      However, $0oplusmathbbZ_3$ is generated by $(0,1).$






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
        $$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
        and
        $$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
        However, $0oplusmathbbZ_3$ is generated by $(0,1).$






        share|cite|improve this answer









        $endgroup$



        No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
        $$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
        and
        $$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
        However, $0oplusmathbbZ_3$ is generated by $(0,1).$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 5 hours ago









        MelodyMelody

        1,41212




        1,41212



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196206%2fnumber-of-generators-of-subgroup%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

            Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її

            Перекидне табло Зміст Переваги | Недоліки | Будова | Посилання | Навігаційне менюПерекидне таблоU.S. Patent 3 220 174U.S. Patent 3 501 761Split-flap-display