How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural DeductionUsing natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?

Sums of two squares in arithmetic progressions

In Bayesian inference, why are some terms dropped from the posterior predictive?

Processor speed limited at 0.4 Ghz

Unlock My Phone! February 2018

My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?

Should I tell management that I intend to leave due to bad software development practices?

Finitely generated matrix groups whose eigenvalues are all algebraic

OP Amp not amplifying audio signal

What are the G forces leaving Earth orbit?

Is there a hemisphere-neutral way of specifying a season?

Is it possible to create a QR code using text?

What is an equivalently powerful replacement spell for the Yuan-Ti's Suggestion spell?

Does Dispel Magic work on Tiny Hut?

Do Iron Man suits sport waste management systems?

files created then deleted at every second in tmp directory

How can a day be of 24 hours?

How exploitable/balanced is this homebrew spell: Spell Permanency?

How does a dynamic QR code work?

Can someone clarify Hamming's notion of important problems in relation to modern academia?

How to enclose theorems and definition in rectangles?

Are British MPs missing the point, with these 'Indicative Votes'?

Partial fraction expansion confusion

Getting extremely large arrows with tikzcd

How to show a landlord what we have in savings?



How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction


Using natural deduction rules give a formal proofIntroductory Natural Deduction QuestionProve A ∨ D from A ∨ (B ∧ C) and (¬ B ∨ ¬ C) ∨ D ( LPL Q6.26) without using --> or material implicationGiven P ∨ ¬ P prove (P → Q) → ((¬ P → Q) → Q) by natural deductionHow to prove ¬(p→q) ⊢ p &¬qDoes anyone have a proof checker they prefer using for modal logic?How do you prove law of excluded middle using tertium non datur?How to prove : (( P → Q ) ∨ ( Q → R )) by natural deductionHow to prove ‘∃xP(x)’ from ‘¬∀x(P(x)→Q(x))’How would i go about using natural deduction to prove this argument is valid?













3















How would a formal Fitch proof look like.
I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
I am confused on how to proceed with the proof.
Please advice me on how to go about with this.



Thanks in advance










share|improve this question







New contributor




Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    3















    How would a formal Fitch proof look like.
    I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
    I am confused on how to proceed with the proof.
    Please advice me on how to go about with this.



    Thanks in advance










    share|improve this question







    New contributor




    Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      3












      3








      3








      How would a formal Fitch proof look like.
      I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
      I am confused on how to proceed with the proof.
      Please advice me on how to go about with this.



      Thanks in advance










      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      How would a formal Fitch proof look like.
      I am given P(a) → ∀x(P(x) ∨ ¬(x = a)) to prove using Natural Deduction of predicate logic.
      I am confused on how to proceed with the proof.
      Please advice me on how to go about with this.



      Thanks in advance







      logic proof fitch quantification






      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 hours ago









      Moey mnmMoey mnm

      16




      16




      New contributor




      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Moey mnm is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          2














          HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



          The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



          Hope this helps!






          share|improve this answer























            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "265"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



            The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



            Hope this helps!






            share|improve this answer



























              2














              HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



              The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



              Hope this helps!






              share|improve this answer

























                2












                2








                2







                HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



                The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



                Hope this helps!






                share|improve this answer













                HINT: I'll sketch the derivation. Since the theorem is a conditional, try using conditional proof/conditional-introduction by assuming P(a) and trying to derive ∀x(P(x) ∨ ¬(x = a)) from it. Here, to derive it, I would try an indirect proof by assuming the negation ¬∀x(P(x) ∨ ¬(x = a)) and trying to derive a contradiction. Use quantifier equivalence rules to get ∃x¬(P(x) ∨ ¬(x = a)).



                The next steps will be a little different depending on your list of rules (quantifier rules typically come with restrictions to ensure the rules are sound, and different texts will use different restrictions). Roughly, we can let y be stand for the particular such that ¬(P(y) ∨ ¬(y = a)). Apply De Morgan's law to get ¬P(y) ∧ (y = a). Since y = a, it must be that ¬P(a), contradicting our assumption that P(a). Hence our contradiction completing the indirect proof of ∀x(P(x) ∨ ¬(x = a)).



                Hope this helps!







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 1 hour ago









                AdamAdam

                4358




                4358




















                    Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.












                    Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.











                    Moey mnm is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Philosophy Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61580%2fhow-to-prove-pa-%25e2%2586%2592-%25e2%2588%2580xpx-%25e2%2588%25a8-%25c2%25acx-a-using-natural-deduction%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                    How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

                    Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її