Definite integral giving negative value as a result?Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral
Alternative to sending password over mail?
Theorems that impeded progress
How to efficiently unroll a matrix by value with numpy?
Why can't I see bouncing of a switch on an oscilloscope?
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Did Shadowfax go to Valinor?
How much of data wrangling is a data scientist's job?
Definite integral giving negative value as a result?
strTok function (thread safe, supports empty tokens, doesn't change string)
What is the word for reserving something for yourself before others do?
Meaning of に in 本当に
Is it possible to run Internet Explorer on OS X El Capitan?
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
Watching something be written to a file live with tail
How do I draw and define two right triangles next to each other?
How does quantile regression compare to logistic regression with the variable split at the quantile?
Does detail obscure or enhance action?
Why is consensus so controversial in Britain?
Maximum likelihood parameters deviate from posterior distributions
Fully-Firstable Anagram Sets
Modeling an IP Address
Why do I get two different answers for this counting problem?
Convert two switches to a dual stack, and add outlet - possible here?
How much RAM could one put in a typical 80386 setup?
Definite integral giving negative value as a result?
Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
|
show 2 more comments
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
5 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
5 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
5 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
5 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
5 hours ago
|
show 2 more comments
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
calculus integration definite-integrals
edited 5 hours ago
Eevee Trainer
9,93831740
9,93831740
asked 5 hours ago
wenoweno
39611
39611
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
5 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
5 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
5 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
5 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
5 hours ago
|
show 2 more comments
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
5 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
5 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
5 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
5 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
5 hours ago
2
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
5 hours ago
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
5 hours ago
2
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
5 hours ago
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
5 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
5 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
5 hours ago
5
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
5 hours ago
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
5 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
5 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
5 hours ago
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
answered 5 hours ago
Eevee TrainerEevee Trainer
9,93831740
9,93831740
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
5 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
5 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
5 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
5 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
5 hours ago