Definite integral giving negative value as a result?Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral

Alternative to sending password over mail?

Theorems that impeded progress

How to efficiently unroll a matrix by value with numpy?

Why can't I see bouncing of a switch on an oscilloscope?

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

Did Shadowfax go to Valinor?

How much of data wrangling is a data scientist's job?

Definite integral giving negative value as a result?

strTok function (thread safe, supports empty tokens, doesn't change string)

What is the word for reserving something for yourself before others do?

Meaning of に in 本当に

Is it possible to run Internet Explorer on OS X El Capitan?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

Watching something be written to a file live with tail

How do I draw and define two right triangles next to each other?

How does quantile regression compare to logistic regression with the variable split at the quantile?

Does detail obscure or enhance action?

Why is consensus so controversial in Britain?

Maximum likelihood parameters deviate from posterior distributions

Fully-Firstable Anagram Sets

Modeling an IP Address

Why do I get two different answers for this counting problem?

Convert two switches to a dual stack, and add outlet - possible here?

How much RAM could one put in a typical 80386 setup?



Definite integral giving negative value as a result?


Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral













4












$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    5 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    5 hours ago











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    5 hours ago







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    5 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    5 hours ago















4












$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    5 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    5 hours ago











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    5 hours ago







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    5 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    5 hours ago













4












4








4





$begingroup$


I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$




I want to calculate definite integral



$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$



$$int frac1x^2e^frac1x dx=-e^frac1x+C$$



so:



$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$



which is a negative value. I believe it should be positive.



What went wrong in the process?







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago









Eevee Trainer

9,93831740




9,93831740










asked 5 hours ago









wenoweno

39611




39611







  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    5 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    5 hours ago











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    5 hours ago







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    5 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    5 hours ago












  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    5 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    5 hours ago











  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
    $endgroup$
    – weno
    5 hours ago







  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    5 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    5 hours ago







2




2




$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
5 hours ago




$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
5 hours ago




2




2




$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
5 hours ago





$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
5 hours ago













$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
5 hours ago





$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
5 hours ago





5




5




$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
5 hours ago




$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
5 hours ago












$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
5 hours ago




$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
5 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



$$int_a^b f(x)dx = F(b) - F(a)$$



when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



    $$int_a^b f(x)dx = F(b) - F(a)$$



    when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



      $$int_a^b f(x)dx = F(b) - F(a)$$



      when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



        $$int_a^b f(x)dx = F(b) - F(a)$$



        when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






        share|cite|improve this answer









        $endgroup$



        What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



        $$int_a^b f(x)dx = F(b) - F(a)$$



        when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 5 hours ago









        Eevee TrainerEevee Trainer

        9,93831740




        9,93831740



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

            How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

            Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її