Confusion about non-derivable continuous functions The 2019 Stack Overflow Developer Survey Results Are InAre there any implicit, continuous, non-differentiable functions?Logical Relations Between Three Statements about Continuous FunctionsCombination of continuous and discontinuous functionsIs there only one continuous-everywhere non-differentiable function?Intuition behind uniformly continuous functionsWhy weren't continuous functions defined as Darboux functions?Examples of functions that do not belong to any Baire classFind all continuous functions that satisfy the Jensen inequality(?) $f(fracx+y2)=fracf(x)+f(y)2$Confused About Limit Points and Closed SetsConfusion About Differentiability of Function
Which Sci-Fi work first showed weapon of galactic-scale mass destruction?
Time travel alters history but people keep saying nothing's changed
Pristine Bit Checking
How to change the limits of integration
Does it makes sense to buy a new cycle to learn riding?
Is domain driven design an anti-SQL pattern?
What is the best strategy for white in this position?
Landlord wants to switch my lease to a "Land contract" to "get back at the city"
Does duplicating a spell with Wish count as casting that spell?
Realistic Alternatives to Dust: What Else Could Feed a Plankton Bloom?
How long do I have to send payment?
I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?
Manuscript was "unsubmitted" because the manuscript was deposited in Arxiv Preprints
Monty Hall variation
"To split hairs" vs "To be pedantic"
Are USB sockets on wall outlets live all the time, even when the switch is off?
Extreme, unacceptable situation and I can't attend work tomorrow morning
Why is it "Tumoren" and not "Tumore"?
On the insanity of kings as an argument against monarchy
Why is the maximum length of openwrt’s root password 8 characters?
Output the Arecibo Message
Where does the "burst of radiance" from Holy Weapon originate?
What is this 4-propeller plane?
"What time...?" or "At what time...?" - what is more grammatically correct?
Confusion about non-derivable continuous functions
The 2019 Stack Overflow Developer Survey Results Are InAre there any implicit, continuous, non-differentiable functions?Logical Relations Between Three Statements about Continuous FunctionsCombination of continuous and discontinuous functionsIs there only one continuous-everywhere non-differentiable function?Intuition behind uniformly continuous functionsWhy weren't continuous functions defined as Darboux functions?Examples of functions that do not belong to any Baire classFind all continuous functions that satisfy the Jensen inequality(?) $f(fracx+y2)=fracf(x)+f(y)2$Confused About Limit Points and Closed SetsConfusion About Differentiability of Function
$begingroup$
I am reading a definition which claims that a function is continuous in point $p$ iff all its first derivations exist and are continuous in the point $p$.
And what confuses me are functions such as $f(x)=|x|$ which should be continuous by intuition, but is clearly not derivable in $x=0$.
I am almost certain I am getting something wrong here, but I can not even pin-point what.
real-analysis functions derivatives continuity
$endgroup$
add a comment |
$begingroup$
I am reading a definition which claims that a function is continuous in point $p$ iff all its first derivations exist and are continuous in the point $p$.
And what confuses me are functions such as $f(x)=|x|$ which should be continuous by intuition, but is clearly not derivable in $x=0$.
I am almost certain I am getting something wrong here, but I can not even pin-point what.
real-analysis functions derivatives continuity
$endgroup$
$begingroup$
For $|x|$ its derivative isn't continuous t zero.
$endgroup$
– coffeemath
5 hours ago
$begingroup$
Where did you read that erroneous definition?
$endgroup$
– bof
5 hours ago
$begingroup$
lecture notes by my prof. i might be mosreading them though
$endgroup$
– fazan
5 hours ago
1
$begingroup$
@avs That is false.
$endgroup$
– zhw.
4 hours ago
2
$begingroup$
@avs That is the definition of a continuously differentiable or $C^1$ function. Being differentiable is strictly weaker (not requiring that the derivatives be continuous).
$endgroup$
– Robert Furber
2 hours ago
add a comment |
$begingroup$
I am reading a definition which claims that a function is continuous in point $p$ iff all its first derivations exist and are continuous in the point $p$.
And what confuses me are functions such as $f(x)=|x|$ which should be continuous by intuition, but is clearly not derivable in $x=0$.
I am almost certain I am getting something wrong here, but I can not even pin-point what.
real-analysis functions derivatives continuity
$endgroup$
I am reading a definition which claims that a function is continuous in point $p$ iff all its first derivations exist and are continuous in the point $p$.
And what confuses me are functions such as $f(x)=|x|$ which should be continuous by intuition, but is clearly not derivable in $x=0$.
I am almost certain I am getting something wrong here, but I can not even pin-point what.
real-analysis functions derivatives continuity
real-analysis functions derivatives continuity
asked 5 hours ago
fazanfazan
537
537
$begingroup$
For $|x|$ its derivative isn't continuous t zero.
$endgroup$
– coffeemath
5 hours ago
$begingroup$
Where did you read that erroneous definition?
$endgroup$
– bof
5 hours ago
$begingroup$
lecture notes by my prof. i might be mosreading them though
$endgroup$
– fazan
5 hours ago
1
$begingroup$
@avs That is false.
$endgroup$
– zhw.
4 hours ago
2
$begingroup$
@avs That is the definition of a continuously differentiable or $C^1$ function. Being differentiable is strictly weaker (not requiring that the derivatives be continuous).
$endgroup$
– Robert Furber
2 hours ago
add a comment |
$begingroup$
For $|x|$ its derivative isn't continuous t zero.
$endgroup$
– coffeemath
5 hours ago
$begingroup$
Where did you read that erroneous definition?
$endgroup$
– bof
5 hours ago
$begingroup$
lecture notes by my prof. i might be mosreading them though
$endgroup$
– fazan
5 hours ago
1
$begingroup$
@avs That is false.
$endgroup$
– zhw.
4 hours ago
2
$begingroup$
@avs That is the definition of a continuously differentiable or $C^1$ function. Being differentiable is strictly weaker (not requiring that the derivatives be continuous).
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
For $|x|$ its derivative isn't continuous t zero.
$endgroup$
– coffeemath
5 hours ago
$begingroup$
For $|x|$ its derivative isn't continuous t zero.
$endgroup$
– coffeemath
5 hours ago
$begingroup$
Where did you read that erroneous definition?
$endgroup$
– bof
5 hours ago
$begingroup$
Where did you read that erroneous definition?
$endgroup$
– bof
5 hours ago
$begingroup$
lecture notes by my prof. i might be mosreading them though
$endgroup$
– fazan
5 hours ago
$begingroup$
lecture notes by my prof. i might be mosreading them though
$endgroup$
– fazan
5 hours ago
1
1
$begingroup$
@avs That is false.
$endgroup$
– zhw.
4 hours ago
$begingroup$
@avs That is false.
$endgroup$
– zhw.
4 hours ago
2
2
$begingroup$
@avs That is the definition of a continuously differentiable or $C^1$ function. Being differentiable is strictly weaker (not requiring that the derivatives be continuous).
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
@avs That is the definition of a continuously differentiable or $C^1$ function. Being differentiable is strictly weaker (not requiring that the derivatives be continuous).
$endgroup$
– Robert Furber
2 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
That "definition" is wrong. You are right, the function $|x|$ is continuous but is not differentiable at $x=0$. Continuity doesn't imply differentiability. However, differentiability does imply continuity.
The definition you stated looks to me as an attempt to define a smooth function, although it is not correct.
$endgroup$
$begingroup$
It is the definition of a continuously differentiable or $C^1$ function. This definition is important because $C^1$ functions on compact manifolds form Banach spaces, whereas differentiable functions do not.
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
Here is the relevant wikipedia page: en.wikipedia.org/wiki/…
$endgroup$
– Robert Furber
2 hours ago
add a comment |
$begingroup$
As has been pointed out this definition is incorrect, as it is inconsistent with the usual definitions of continuity and differentiability. Your example $|x|$ suffices to show this.
If you are encountering this in multivariable calculus then your professor might be trying to state the theorem mentioned by avs in the comments: that a function is differentiable at a point if all its first order partial derivatives exist in a neighbourhood of that point, and are continuous at that point. However the converse is not generally true: consider for example the function
$$f(x,y)=begincases(x^2+y^2)sin(frac1sqrtx^2+y^2) &(x,y)neq(0,0)\0&(x,y)=(0,0)endcases$$
at the origin. Thus this assumption might be completely false. It might be best to give a word for word reproduction of the statement and the paragraph before and after.
$endgroup$
$begingroup$
The partial derivatives need not be continuous for differentiability.
$endgroup$
– Haris Gusic
5 hours ago
1
$begingroup$
@HarisGusic yes I realized as I posted. Fixed it
$endgroup$
– K.Power
5 hours ago
add a comment |
$begingroup$
Sounds like the wrong definition of what a "continuous function" is. Any function $f:mathbbRtomathbb R$ like in your original post is continuous at every point $left(a,fleft(aright)right)$ wherever $$limlimits_xto a^-fleft(xright)=limlimits_xto a^+fleft(xright)$$ (denoting the left and right-hand limits accordingly)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181529%2fconfusion-about-non-derivable-continuous-functions%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
That "definition" is wrong. You are right, the function $|x|$ is continuous but is not differentiable at $x=0$. Continuity doesn't imply differentiability. However, differentiability does imply continuity.
The definition you stated looks to me as an attempt to define a smooth function, although it is not correct.
$endgroup$
$begingroup$
It is the definition of a continuously differentiable or $C^1$ function. This definition is important because $C^1$ functions on compact manifolds form Banach spaces, whereas differentiable functions do not.
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
Here is the relevant wikipedia page: en.wikipedia.org/wiki/…
$endgroup$
– Robert Furber
2 hours ago
add a comment |
$begingroup$
That "definition" is wrong. You are right, the function $|x|$ is continuous but is not differentiable at $x=0$. Continuity doesn't imply differentiability. However, differentiability does imply continuity.
The definition you stated looks to me as an attempt to define a smooth function, although it is not correct.
$endgroup$
$begingroup$
It is the definition of a continuously differentiable or $C^1$ function. This definition is important because $C^1$ functions on compact manifolds form Banach spaces, whereas differentiable functions do not.
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
Here is the relevant wikipedia page: en.wikipedia.org/wiki/…
$endgroup$
– Robert Furber
2 hours ago
add a comment |
$begingroup$
That "definition" is wrong. You are right, the function $|x|$ is continuous but is not differentiable at $x=0$. Continuity doesn't imply differentiability. However, differentiability does imply continuity.
The definition you stated looks to me as an attempt to define a smooth function, although it is not correct.
$endgroup$
That "definition" is wrong. You are right, the function $|x|$ is continuous but is not differentiable at $x=0$. Continuity doesn't imply differentiability. However, differentiability does imply continuity.
The definition you stated looks to me as an attempt to define a smooth function, although it is not correct.
edited 5 hours ago
answered 5 hours ago
Haris GusicHaris Gusic
3,516627
3,516627
$begingroup$
It is the definition of a continuously differentiable or $C^1$ function. This definition is important because $C^1$ functions on compact manifolds form Banach spaces, whereas differentiable functions do not.
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
Here is the relevant wikipedia page: en.wikipedia.org/wiki/…
$endgroup$
– Robert Furber
2 hours ago
add a comment |
$begingroup$
It is the definition of a continuously differentiable or $C^1$ function. This definition is important because $C^1$ functions on compact manifolds form Banach spaces, whereas differentiable functions do not.
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
Here is the relevant wikipedia page: en.wikipedia.org/wiki/…
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
It is the definition of a continuously differentiable or $C^1$ function. This definition is important because $C^1$ functions on compact manifolds form Banach spaces, whereas differentiable functions do not.
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
It is the definition of a continuously differentiable or $C^1$ function. This definition is important because $C^1$ functions on compact manifolds form Banach spaces, whereas differentiable functions do not.
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
Here is the relevant wikipedia page: en.wikipedia.org/wiki/…
$endgroup$
– Robert Furber
2 hours ago
$begingroup$
Here is the relevant wikipedia page: en.wikipedia.org/wiki/…
$endgroup$
– Robert Furber
2 hours ago
add a comment |
$begingroup$
As has been pointed out this definition is incorrect, as it is inconsistent with the usual definitions of continuity and differentiability. Your example $|x|$ suffices to show this.
If you are encountering this in multivariable calculus then your professor might be trying to state the theorem mentioned by avs in the comments: that a function is differentiable at a point if all its first order partial derivatives exist in a neighbourhood of that point, and are continuous at that point. However the converse is not generally true: consider for example the function
$$f(x,y)=begincases(x^2+y^2)sin(frac1sqrtx^2+y^2) &(x,y)neq(0,0)\0&(x,y)=(0,0)endcases$$
at the origin. Thus this assumption might be completely false. It might be best to give a word for word reproduction of the statement and the paragraph before and after.
$endgroup$
$begingroup$
The partial derivatives need not be continuous for differentiability.
$endgroup$
– Haris Gusic
5 hours ago
1
$begingroup$
@HarisGusic yes I realized as I posted. Fixed it
$endgroup$
– K.Power
5 hours ago
add a comment |
$begingroup$
As has been pointed out this definition is incorrect, as it is inconsistent with the usual definitions of continuity and differentiability. Your example $|x|$ suffices to show this.
If you are encountering this in multivariable calculus then your professor might be trying to state the theorem mentioned by avs in the comments: that a function is differentiable at a point if all its first order partial derivatives exist in a neighbourhood of that point, and are continuous at that point. However the converse is not generally true: consider for example the function
$$f(x,y)=begincases(x^2+y^2)sin(frac1sqrtx^2+y^2) &(x,y)neq(0,0)\0&(x,y)=(0,0)endcases$$
at the origin. Thus this assumption might be completely false. It might be best to give a word for word reproduction of the statement and the paragraph before and after.
$endgroup$
$begingroup$
The partial derivatives need not be continuous for differentiability.
$endgroup$
– Haris Gusic
5 hours ago
1
$begingroup$
@HarisGusic yes I realized as I posted. Fixed it
$endgroup$
– K.Power
5 hours ago
add a comment |
$begingroup$
As has been pointed out this definition is incorrect, as it is inconsistent with the usual definitions of continuity and differentiability. Your example $|x|$ suffices to show this.
If you are encountering this in multivariable calculus then your professor might be trying to state the theorem mentioned by avs in the comments: that a function is differentiable at a point if all its first order partial derivatives exist in a neighbourhood of that point, and are continuous at that point. However the converse is not generally true: consider for example the function
$$f(x,y)=begincases(x^2+y^2)sin(frac1sqrtx^2+y^2) &(x,y)neq(0,0)\0&(x,y)=(0,0)endcases$$
at the origin. Thus this assumption might be completely false. It might be best to give a word for word reproduction of the statement and the paragraph before and after.
$endgroup$
As has been pointed out this definition is incorrect, as it is inconsistent with the usual definitions of continuity and differentiability. Your example $|x|$ suffices to show this.
If you are encountering this in multivariable calculus then your professor might be trying to state the theorem mentioned by avs in the comments: that a function is differentiable at a point if all its first order partial derivatives exist in a neighbourhood of that point, and are continuous at that point. However the converse is not generally true: consider for example the function
$$f(x,y)=begincases(x^2+y^2)sin(frac1sqrtx^2+y^2) &(x,y)neq(0,0)\0&(x,y)=(0,0)endcases$$
at the origin. Thus this assumption might be completely false. It might be best to give a word for word reproduction of the statement and the paragraph before and after.
edited 5 hours ago
answered 5 hours ago
K.PowerK.Power
3,710926
3,710926
$begingroup$
The partial derivatives need not be continuous for differentiability.
$endgroup$
– Haris Gusic
5 hours ago
1
$begingroup$
@HarisGusic yes I realized as I posted. Fixed it
$endgroup$
– K.Power
5 hours ago
add a comment |
$begingroup$
The partial derivatives need not be continuous for differentiability.
$endgroup$
– Haris Gusic
5 hours ago
1
$begingroup$
@HarisGusic yes I realized as I posted. Fixed it
$endgroup$
– K.Power
5 hours ago
$begingroup$
The partial derivatives need not be continuous for differentiability.
$endgroup$
– Haris Gusic
5 hours ago
$begingroup$
The partial derivatives need not be continuous for differentiability.
$endgroup$
– Haris Gusic
5 hours ago
1
1
$begingroup$
@HarisGusic yes I realized as I posted. Fixed it
$endgroup$
– K.Power
5 hours ago
$begingroup$
@HarisGusic yes I realized as I posted. Fixed it
$endgroup$
– K.Power
5 hours ago
add a comment |
$begingroup$
Sounds like the wrong definition of what a "continuous function" is. Any function $f:mathbbRtomathbb R$ like in your original post is continuous at every point $left(a,fleft(aright)right)$ wherever $$limlimits_xto a^-fleft(xright)=limlimits_xto a^+fleft(xright)$$ (denoting the left and right-hand limits accordingly)
$endgroup$
add a comment |
$begingroup$
Sounds like the wrong definition of what a "continuous function" is. Any function $f:mathbbRtomathbb R$ like in your original post is continuous at every point $left(a,fleft(aright)right)$ wherever $$limlimits_xto a^-fleft(xright)=limlimits_xto a^+fleft(xright)$$ (denoting the left and right-hand limits accordingly)
$endgroup$
add a comment |
$begingroup$
Sounds like the wrong definition of what a "continuous function" is. Any function $f:mathbbRtomathbb R$ like in your original post is continuous at every point $left(a,fleft(aright)right)$ wherever $$limlimits_xto a^-fleft(xright)=limlimits_xto a^+fleft(xright)$$ (denoting the left and right-hand limits accordingly)
$endgroup$
Sounds like the wrong definition of what a "continuous function" is. Any function $f:mathbbRtomathbb R$ like in your original post is continuous at every point $left(a,fleft(aright)right)$ wherever $$limlimits_xto a^-fleft(xright)=limlimits_xto a^+fleft(xright)$$ (denoting the left and right-hand limits accordingly)
answered 3 hours ago
ManRowManRow
24618
24618
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181529%2fconfusion-about-non-derivable-continuous-functions%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
For $|x|$ its derivative isn't continuous t zero.
$endgroup$
– coffeemath
5 hours ago
$begingroup$
Where did you read that erroneous definition?
$endgroup$
– bof
5 hours ago
$begingroup$
lecture notes by my prof. i might be mosreading them though
$endgroup$
– fazan
5 hours ago
1
$begingroup$
@avs That is false.
$endgroup$
– zhw.
4 hours ago
2
$begingroup$
@avs That is the definition of a continuously differentiable or $C^1$ function. Being differentiable is strictly weaker (not requiring that the derivatives be continuous).
$endgroup$
– Robert Furber
2 hours ago