Four married couples attend a party. Each person shakes hands with every other person, except their own spouse, exactly once. How many handshakes?counting hands shakePuzzle - In how many pairings can 25 married couples dance when exactly 7 men dance with their own wives?Graph Theory number of handshakes of couplesHandshakes in a partyHow many mixed double pairs can be made from 7 married couples provided that no husband and wife plays in a same set?In how many ways can 10 married couples line up for a photograph if every wife stands next to her husband?How many ways are there to order $n$ women and $n$ men in circleFinding the number of combinations.Round table combinatoricsNumber of handshakes - exclusion apporach
What is a ^ b and (a & b) << 1?
While on vacation my taxi took a longer route, possibly to scam me out of money. How can I deal with this?
Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?
How to terminate ping <dest> &
Why do newer 737s use two different styles of split winglets?
Knife as defense against stray dogs
Python if-else code style for reduced code for rounding floats
Is a party consisting of only a bard, a cleric, and a warlock functional long-term?
Do the common programs (for example: "ls", "cat") in Linux and BSD come from the same source code?
Simplify an interface for flexibly applying rules to periods of time
What is the significance behind "40 days" that often appears in the Bible?
Do I need life insurance if I can cover my own funeral costs?
How can we have a quark condensate without a quark potential?
When to use a slotted vs. solid turner?
Could the Saturn V actually have launched astronauts around Venus?
Why is a white electrical wire connected to 2 black wires?
Is "upgrade" the right word to use in this context?
Why do tuner card drivers fail to build after kernel update to 4.4.0-143-generic?
How difficult is it to simply disable/disengage the MCAS on Boeing 737 Max 8 & 9 Aircraft?
What did “the good wine” (τὸν καλὸν οἶνον) mean in John 2:10?
Official degrees of earth’s rotation per day
Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible
Are all passive ability checks floors for active ability checks?
What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?
Four married couples attend a party. Each person shakes hands with every other person, except their own spouse, exactly once. How many handshakes?
counting hands shakePuzzle - In how many pairings can 25 married couples dance when exactly 7 men dance with their own wives?Graph Theory number of handshakes of couplesHandshakes in a partyHow many mixed double pairs can be made from 7 married couples provided that no husband and wife plays in a same set?In how many ways can 10 married couples line up for a photograph if every wife stands next to her husband?How many ways are there to order $n$ women and $n$ men in circleFinding the number of combinations.Round table combinatoricsNumber of handshakes - exclusion apporach
$begingroup$
My book gave the answer as 24. I thought of it like this:
You have four pairs of couples, so you can think of it as M1W2, M2W2, M3W3, M4W4, where
M is a man and W is a woman. M1 has to shake 6 other hands, excluding his wife. You have to do this 4 times for the other men, so you have 4 * 6 handshakes, but in my answer you are double counting. How do I approach this?
combinatorics
$endgroup$
add a comment |
$begingroup$
My book gave the answer as 24. I thought of it like this:
You have four pairs of couples, so you can think of it as M1W2, M2W2, M3W3, M4W4, where
M is a man and W is a woman. M1 has to shake 6 other hands, excluding his wife. You have to do this 4 times for the other men, so you have 4 * 6 handshakes, but in my answer you are double counting. How do I approach this?
combinatorics
$endgroup$
$begingroup$
In your answer, you both overcounted and undercounted, and incidentally these happened to cancel out and give you the correct answer without having to do anything further. You did $4 times (textHandshakes done by the men)$, which overcounted the man-man handshakes, but left out the woman-woman handshakes.
$endgroup$
– M. Vinay
37 mins ago
$begingroup$
And that's easily fixed by counting all such handshakes in the same way, not just those done by men, so you get $48$. And now, as you said, you have indeed double-counted. But if you know it's exactly double counting, you can get the answer by halving it!
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
I recommend when you have a problem like this you can't solve, try solving an easier version first, like only 2 couples and anything goes.
$endgroup$
– DanielV
12 mins ago
add a comment |
$begingroup$
My book gave the answer as 24. I thought of it like this:
You have four pairs of couples, so you can think of it as M1W2, M2W2, M3W3, M4W4, where
M is a man and W is a woman. M1 has to shake 6 other hands, excluding his wife. You have to do this 4 times for the other men, so you have 4 * 6 handshakes, but in my answer you are double counting. How do I approach this?
combinatorics
$endgroup$
My book gave the answer as 24. I thought of it like this:
You have four pairs of couples, so you can think of it as M1W2, M2W2, M3W3, M4W4, where
M is a man and W is a woman. M1 has to shake 6 other hands, excluding his wife. You have to do this 4 times for the other men, so you have 4 * 6 handshakes, but in my answer you are double counting. How do I approach this?
combinatorics
combinatorics
asked 45 mins ago
ZakuZaku
592
592
$begingroup$
In your answer, you both overcounted and undercounted, and incidentally these happened to cancel out and give you the correct answer without having to do anything further. You did $4 times (textHandshakes done by the men)$, which overcounted the man-man handshakes, but left out the woman-woman handshakes.
$endgroup$
– M. Vinay
37 mins ago
$begingroup$
And that's easily fixed by counting all such handshakes in the same way, not just those done by men, so you get $48$. And now, as you said, you have indeed double-counted. But if you know it's exactly double counting, you can get the answer by halving it!
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
I recommend when you have a problem like this you can't solve, try solving an easier version first, like only 2 couples and anything goes.
$endgroup$
– DanielV
12 mins ago
add a comment |
$begingroup$
In your answer, you both overcounted and undercounted, and incidentally these happened to cancel out and give you the correct answer without having to do anything further. You did $4 times (textHandshakes done by the men)$, which overcounted the man-man handshakes, but left out the woman-woman handshakes.
$endgroup$
– M. Vinay
37 mins ago
$begingroup$
And that's easily fixed by counting all such handshakes in the same way, not just those done by men, so you get $48$. And now, as you said, you have indeed double-counted. But if you know it's exactly double counting, you can get the answer by halving it!
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
I recommend when you have a problem like this you can't solve, try solving an easier version first, like only 2 couples and anything goes.
$endgroup$
– DanielV
12 mins ago
$begingroup$
In your answer, you both overcounted and undercounted, and incidentally these happened to cancel out and give you the correct answer without having to do anything further. You did $4 times (textHandshakes done by the men)$, which overcounted the man-man handshakes, but left out the woman-woman handshakes.
$endgroup$
– M. Vinay
37 mins ago
$begingroup$
In your answer, you both overcounted and undercounted, and incidentally these happened to cancel out and give you the correct answer without having to do anything further. You did $4 times (textHandshakes done by the men)$, which overcounted the man-man handshakes, but left out the woman-woman handshakes.
$endgroup$
– M. Vinay
37 mins ago
$begingroup$
And that's easily fixed by counting all such handshakes in the same way, not just those done by men, so you get $48$. And now, as you said, you have indeed double-counted. But if you know it's exactly double counting, you can get the answer by halving it!
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
And that's easily fixed by counting all such handshakes in the same way, not just those done by men, so you get $48$. And now, as you said, you have indeed double-counted. But if you know it's exactly double counting, you can get the answer by halving it!
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
I recommend when you have a problem like this you can't solve, try solving an easier version first, like only 2 couples and anything goes.
$endgroup$
– DanielV
12 mins ago
$begingroup$
I recommend when you have a problem like this you can't solve, try solving an easier version first, like only 2 couples and anything goes.
$endgroup$
– DanielV
12 mins ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Suppose the spouses were allowed to shake each other's hands. That would give you $binom82 = 28$ handshakes. Since there are four couples, four of these handshakes are illegal. We can remove those to get the $24$ legal handshakes.
$endgroup$
add a comment |
$begingroup$
You may proceed as follows using combinations:
- Number of all possible handshakes among 8 people: $colorbluebinom82$
- Number of pairs who do not shake hands: $colorblue4$
It follows:
$$mboxnumber of hand shakes without pairs = colorbluebinom82 - colorblue4 = frac8cdot 72 - 4 = 24$$
$endgroup$
add a comment |
$begingroup$
$k$ couples entails $2k$ people. If we imagine each couple going in sequential order, couple 1 will each have to shake $2k-2$ couple's hands for each individual, or $4k-4$ handshakes for couple 1 total. Since there is 1 fewer couple every time a new couple shakes hands, there will be $4k-4i$ handshakes by the $i$-th couple. So the total number of handshakes is given by:
$$sum_i=1^k (4k-4i) = sum_i=1^k4k - sum_i=1^k4i = 4k^2 - 4frack(k+1)2 = 4(k^2 - frack^2+k2) = 4(k^2 - (frack^22 + frack2)) = 4(frack^22-frack2) = 2(k^2-k)$$
for $k$ couples. Plugging in $k$ = 4 verifies a solution of 24 for this case.
New contributor
$endgroup$
$begingroup$
Well, that quite goes against the grain of combinatorics, since you've listed nearly all cases. Try to count without listing. Think lazy!
$endgroup$
– M. Vinay
34 mins ago
$begingroup$
True. I'll delete this.
$endgroup$
– beefstew2011
34 mins ago
$begingroup$
Undeleted with more general answer.
$endgroup$
– beefstew2011
13 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151152%2ffour-married-couples-attend-a-party-each-person-shakes-hands-with-every-other-p%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose the spouses were allowed to shake each other's hands. That would give you $binom82 = 28$ handshakes. Since there are four couples, four of these handshakes are illegal. We can remove those to get the $24$ legal handshakes.
$endgroup$
add a comment |
$begingroup$
Suppose the spouses were allowed to shake each other's hands. That would give you $binom82 = 28$ handshakes. Since there are four couples, four of these handshakes are illegal. We can remove those to get the $24$ legal handshakes.
$endgroup$
add a comment |
$begingroup$
Suppose the spouses were allowed to shake each other's hands. That would give you $binom82 = 28$ handshakes. Since there are four couples, four of these handshakes are illegal. We can remove those to get the $24$ legal handshakes.
$endgroup$
Suppose the spouses were allowed to shake each other's hands. That would give you $binom82 = 28$ handshakes. Since there are four couples, four of these handshakes are illegal. We can remove those to get the $24$ legal handshakes.
answered 24 mins ago
Austin MohrAustin Mohr
20.5k35098
20.5k35098
add a comment |
add a comment |
$begingroup$
You may proceed as follows using combinations:
- Number of all possible handshakes among 8 people: $colorbluebinom82$
- Number of pairs who do not shake hands: $colorblue4$
It follows:
$$mboxnumber of hand shakes without pairs = colorbluebinom82 - colorblue4 = frac8cdot 72 - 4 = 24$$
$endgroup$
add a comment |
$begingroup$
You may proceed as follows using combinations:
- Number of all possible handshakes among 8 people: $colorbluebinom82$
- Number of pairs who do not shake hands: $colorblue4$
It follows:
$$mboxnumber of hand shakes without pairs = colorbluebinom82 - colorblue4 = frac8cdot 72 - 4 = 24$$
$endgroup$
add a comment |
$begingroup$
You may proceed as follows using combinations:
- Number of all possible handshakes among 8 people: $colorbluebinom82$
- Number of pairs who do not shake hands: $colorblue4$
It follows:
$$mboxnumber of hand shakes without pairs = colorbluebinom82 - colorblue4 = frac8cdot 72 - 4 = 24$$
$endgroup$
You may proceed as follows using combinations:
- Number of all possible handshakes among 8 people: $colorbluebinom82$
- Number of pairs who do not shake hands: $colorblue4$
It follows:
$$mboxnumber of hand shakes without pairs = colorbluebinom82 - colorblue4 = frac8cdot 72 - 4 = 24$$
answered 23 mins ago
trancelocationtrancelocation
12.6k1826
12.6k1826
add a comment |
add a comment |
$begingroup$
$k$ couples entails $2k$ people. If we imagine each couple going in sequential order, couple 1 will each have to shake $2k-2$ couple's hands for each individual, or $4k-4$ handshakes for couple 1 total. Since there is 1 fewer couple every time a new couple shakes hands, there will be $4k-4i$ handshakes by the $i$-th couple. So the total number of handshakes is given by:
$$sum_i=1^k (4k-4i) = sum_i=1^k4k - sum_i=1^k4i = 4k^2 - 4frack(k+1)2 = 4(k^2 - frack^2+k2) = 4(k^2 - (frack^22 + frack2)) = 4(frack^22-frack2) = 2(k^2-k)$$
for $k$ couples. Plugging in $k$ = 4 verifies a solution of 24 for this case.
New contributor
$endgroup$
$begingroup$
Well, that quite goes against the grain of combinatorics, since you've listed nearly all cases. Try to count without listing. Think lazy!
$endgroup$
– M. Vinay
34 mins ago
$begingroup$
True. I'll delete this.
$endgroup$
– beefstew2011
34 mins ago
$begingroup$
Undeleted with more general answer.
$endgroup$
– beefstew2011
13 mins ago
add a comment |
$begingroup$
$k$ couples entails $2k$ people. If we imagine each couple going in sequential order, couple 1 will each have to shake $2k-2$ couple's hands for each individual, or $4k-4$ handshakes for couple 1 total. Since there is 1 fewer couple every time a new couple shakes hands, there will be $4k-4i$ handshakes by the $i$-th couple. So the total number of handshakes is given by:
$$sum_i=1^k (4k-4i) = sum_i=1^k4k - sum_i=1^k4i = 4k^2 - 4frack(k+1)2 = 4(k^2 - frack^2+k2) = 4(k^2 - (frack^22 + frack2)) = 4(frack^22-frack2) = 2(k^2-k)$$
for $k$ couples. Plugging in $k$ = 4 verifies a solution of 24 for this case.
New contributor
$endgroup$
$begingroup$
Well, that quite goes against the grain of combinatorics, since you've listed nearly all cases. Try to count without listing. Think lazy!
$endgroup$
– M. Vinay
34 mins ago
$begingroup$
True. I'll delete this.
$endgroup$
– beefstew2011
34 mins ago
$begingroup$
Undeleted with more general answer.
$endgroup$
– beefstew2011
13 mins ago
add a comment |
$begingroup$
$k$ couples entails $2k$ people. If we imagine each couple going in sequential order, couple 1 will each have to shake $2k-2$ couple's hands for each individual, or $4k-4$ handshakes for couple 1 total. Since there is 1 fewer couple every time a new couple shakes hands, there will be $4k-4i$ handshakes by the $i$-th couple. So the total number of handshakes is given by:
$$sum_i=1^k (4k-4i) = sum_i=1^k4k - sum_i=1^k4i = 4k^2 - 4frack(k+1)2 = 4(k^2 - frack^2+k2) = 4(k^2 - (frack^22 + frack2)) = 4(frack^22-frack2) = 2(k^2-k)$$
for $k$ couples. Plugging in $k$ = 4 verifies a solution of 24 for this case.
New contributor
$endgroup$
$k$ couples entails $2k$ people. If we imagine each couple going in sequential order, couple 1 will each have to shake $2k-2$ couple's hands for each individual, or $4k-4$ handshakes for couple 1 total. Since there is 1 fewer couple every time a new couple shakes hands, there will be $4k-4i$ handshakes by the $i$-th couple. So the total number of handshakes is given by:
$$sum_i=1^k (4k-4i) = sum_i=1^k4k - sum_i=1^k4i = 4k^2 - 4frack(k+1)2 = 4(k^2 - frack^2+k2) = 4(k^2 - (frack^22 + frack2)) = 4(frack^22-frack2) = 2(k^2-k)$$
for $k$ couples. Plugging in $k$ = 4 verifies a solution of 24 for this case.
New contributor
edited 14 mins ago
New contributor
answered 36 mins ago
beefstew2011beefstew2011
687
687
New contributor
New contributor
$begingroup$
Well, that quite goes against the grain of combinatorics, since you've listed nearly all cases. Try to count without listing. Think lazy!
$endgroup$
– M. Vinay
34 mins ago
$begingroup$
True. I'll delete this.
$endgroup$
– beefstew2011
34 mins ago
$begingroup$
Undeleted with more general answer.
$endgroup$
– beefstew2011
13 mins ago
add a comment |
$begingroup$
Well, that quite goes against the grain of combinatorics, since you've listed nearly all cases. Try to count without listing. Think lazy!
$endgroup$
– M. Vinay
34 mins ago
$begingroup$
True. I'll delete this.
$endgroup$
– beefstew2011
34 mins ago
$begingroup$
Undeleted with more general answer.
$endgroup$
– beefstew2011
13 mins ago
$begingroup$
Well, that quite goes against the grain of combinatorics, since you've listed nearly all cases. Try to count without listing. Think lazy!
$endgroup$
– M. Vinay
34 mins ago
$begingroup$
Well, that quite goes against the grain of combinatorics, since you've listed nearly all cases. Try to count without listing. Think lazy!
$endgroup$
– M. Vinay
34 mins ago
$begingroup$
True. I'll delete this.
$endgroup$
– beefstew2011
34 mins ago
$begingroup$
True. I'll delete this.
$endgroup$
– beefstew2011
34 mins ago
$begingroup$
Undeleted with more general answer.
$endgroup$
– beefstew2011
13 mins ago
$begingroup$
Undeleted with more general answer.
$endgroup$
– beefstew2011
13 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151152%2ffour-married-couples-attend-a-party-each-person-shakes-hands-with-every-other-p%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In your answer, you both overcounted and undercounted, and incidentally these happened to cancel out and give you the correct answer without having to do anything further. You did $4 times (textHandshakes done by the men)$, which overcounted the man-man handshakes, but left out the woman-woman handshakes.
$endgroup$
– M. Vinay
37 mins ago
$begingroup$
And that's easily fixed by counting all such handshakes in the same way, not just those done by men, so you get $48$. And now, as you said, you have indeed double-counted. But if you know it's exactly double counting, you can get the answer by halving it!
$endgroup$
– M. Vinay
30 mins ago
$begingroup$
I recommend when you have a problem like this you can't solve, try solving an easier version first, like only 2 couples and anything goes.
$endgroup$
– DanielV
12 mins ago