How to show the equivalence between the regularized regression and their constraint formulas using KKTThe proof of equivalent formulas of ridge regressionRidge regression formulation as constrained versus penalized: How are they equivalent?Equivalence between Elastic Net formulationsCalculating $R^2$ for Elastic NetEquivalence between Elastic Net formulationsWhy is “relaxed lasso” different from standard lasso?Bridge penalty vs. Elastic Net regularizationLogistic regression coefficients are wildlyHow to explain differences in formulas of ridge regression, lasso, and elastic netIntuition Behind the Elastic Net PenaltyRegularized Logistic Regression: Lasso vs. Ridge vs. Elastic NetCan you predict the residuals from a regularized regression using the same data?Elastic Net and collinearity

Is it possible to create light that imparts a greater proportion of its energy as momentum rather than heat?

Is there a hemisphere-neutral way of specifying a season?

SSH "lag" in LAN on some machines, mixed distros

Where does SFDX store details about scratch orgs?

Does a druid starting with a bow start with no arrows?

When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?

Should I tell management that I intend to leave due to bad software development practices?

What does it mean to describe someone as a butt steak?

How to draw the figure with four pentagons?

Facing a paradox: Earnshaw's theorem in one dimension

Is the Joker left-handed?

Assassin's bullet with mercury

What is going on with Captain Marvel's blood colour?

Theorems that impeded progress

How to prevent "they're falling in love" trope

A reference to a well-known characterization of scattered compact spaces

What's the difference between 'rename' and 'mv'?

What reasons are there for a Capitalist to oppose a 100% inheritance tax?

How to show the equivalence between the regularized regression and their constraint formulas using KKT

What killed these X2 caps?

Can I use a neutral wire from another outlet to repair a broken neutral?

Why does Arabsat 6A need a Falcon Heavy to launch

I'm flying to France today and my passport expires in less than 2 months

Neighboring nodes in the network



How to show the equivalence between the regularized regression and their constraint formulas using KKT


The proof of equivalent formulas of ridge regressionRidge regression formulation as constrained versus penalized: How are they equivalent?Equivalence between Elastic Net formulationsCalculating $R^2$ for Elastic NetEquivalence between Elastic Net formulationsWhy is “relaxed lasso” different from standard lasso?Bridge penalty vs. Elastic Net regularizationLogistic regression coefficients are wildlyHow to explain differences in formulas of ridge regression, lasso, and elastic netIntuition Behind the Elastic Net PenaltyRegularized Logistic Regression: Lasso vs. Ridge vs. Elastic NetCan you predict the residuals from a regularized regression using the same data?Elastic Net and collinearity






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








6












$begingroup$


According to the following references



Book 1, Book 2 and paper.



It has been mentioned that there is an equivalence between the regularized regression (Ridge, LASSO and Elastic Net) and their constraint formulas.



I have also looked at Cross Validated 1, and Cross Validated 2, but I can not see a clear answer show that equivalence or logic.



My question is how to show that equivalence using Karush–Kuhn–Tucker (KKT)?



These formulas are for Ridge regression.



Ridge



These formulas are for LASSO regression.



|LASSO



These formulas are for Elastic Net regression.



Elastic Net



NOTE



This question is not homework. It is only to increase my comprehension of this topic.










share|cite|improve this question











$endgroup$


















    6












    $begingroup$


    According to the following references



    Book 1, Book 2 and paper.



    It has been mentioned that there is an equivalence between the regularized regression (Ridge, LASSO and Elastic Net) and their constraint formulas.



    I have also looked at Cross Validated 1, and Cross Validated 2, but I can not see a clear answer show that equivalence or logic.



    My question is how to show that equivalence using Karush–Kuhn–Tucker (KKT)?



    These formulas are for Ridge regression.



    Ridge



    These formulas are for LASSO regression.



    |LASSO



    These formulas are for Elastic Net regression.



    Elastic Net



    NOTE



    This question is not homework. It is only to increase my comprehension of this topic.










    share|cite|improve this question











    $endgroup$














      6












      6








      6


      2



      $begingroup$


      According to the following references



      Book 1, Book 2 and paper.



      It has been mentioned that there is an equivalence between the regularized regression (Ridge, LASSO and Elastic Net) and their constraint formulas.



      I have also looked at Cross Validated 1, and Cross Validated 2, but I can not see a clear answer show that equivalence or logic.



      My question is how to show that equivalence using Karush–Kuhn–Tucker (KKT)?



      These formulas are for Ridge regression.



      Ridge



      These formulas are for LASSO regression.



      |LASSO



      These formulas are for Elastic Net regression.



      Elastic Net



      NOTE



      This question is not homework. It is only to increase my comprehension of this topic.










      share|cite|improve this question











      $endgroup$




      According to the following references



      Book 1, Book 2 and paper.



      It has been mentioned that there is an equivalence between the regularized regression (Ridge, LASSO and Elastic Net) and their constraint formulas.



      I have also looked at Cross Validated 1, and Cross Validated 2, but I can not see a clear answer show that equivalence or logic.



      My question is how to show that equivalence using Karush–Kuhn–Tucker (KKT)?



      These formulas are for Ridge regression.



      Ridge



      These formulas are for LASSO regression.



      |LASSO



      These formulas are for Elastic Net regression.



      Elastic Net



      NOTE



      This question is not homework. It is only to increase my comprehension of this topic.







      regression optimization lasso ridge-regression elastic-net






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago







      jeza

















      asked 9 hours ago









      jezajeza

      470420




      470420




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
          $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu leftbeta_j$$
          where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



          However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
          $$max_x f(x) + lambda g(x)$$
          We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
          $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
          So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "65"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401212%2fhow-to-show-the-equivalence-between-the-regularized-regression-and-their-constra%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
            $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu leftbeta_j$$
            where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



            However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
            $$max_x f(x) + lambda g(x)$$
            We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
            $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
            So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.






            share|cite|improve this answer











            $endgroup$

















              6












              $begingroup$

              The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
              $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu leftbeta_j$$
              where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



              However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
              $$max_x f(x) + lambda g(x)$$
              We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
              $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
              So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.






              share|cite|improve this answer











              $endgroup$















                6












                6








                6





                $begingroup$

                The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
                $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu leftbeta_j$$
                where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



                However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
                $$max_x f(x) + lambda g(x)$$
                We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
                $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
                So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.






                share|cite|improve this answer











                $endgroup$



                The more technical answer is because the constrained optimization problem can be written in terms of Lagrange multipliers. In particular, the Lagrangian associated with the constrained optimization problem is given by
                $$mathcal L(beta) = undersetbetamathrmargmin,leftsum_i=1^N left(y_i - sum_j=1^p x_ij beta_jright)^2right + mu leftbeta_j$$
                where $mu$ is a multiplier chosen to satisfy the constraints of the problem. The first order conditions (which are sufficient since you are working with nice proper convex functions) for this optimization problem can thus be obtained by differentiating the Lagrangian with respect to $beta$ and setting the derivatives equal to 0 (it's a bit more nuanced since the LASSO part has undifferentiable points, but there are methods from convex analysis to generalize the derivative to make the first order condition still work). It is clear that these first order conditions are identical to the first order conditions of the unconstrained problem you wrote down.



                However, I think it's useful to see why in general, with these optimization problems, it is often possible to think about the problem either through the lens of a constrained optimization problem or through the lens of an unconstrained problem. More concretely, suppose we have an unconstrained optimization problem of the following form:
                $$max_x f(x) + lambda g(x)$$
                We can always try to solve this optimization directly, but sometimes, it might make sense to break this problem into subcomponents. In particular, it is not hard to see that
                $$max_x f(x) + lambda g(x) = max_t left(max_x f(x) mathrm s.t g(x) = tright) + lambda t$$
                So for a fixed value of $lambda$ (and assuming the functions to be optimized actually achieve their optima), we can associate with it a value $t^*$ that solves the outer optimization problem. This gives us a sort of mapping from unconstrained optimization problems to constrained problems. In your particular setting, since everything is nicely behaved for elastic net regression, this mapping should in fact be one to one, so it will be useful to be able to switch between these two contexts depending on which is more useful to a particular application. In general, this relationship between constrained and unconstrained problems may be less well behaved, but it may still be useful to think about to what extent you can move between the constrained and unconstrained problem.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 6 hours ago

























                answered 9 hours ago









                stats_modelstats_model

                20216




                20216



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401212%2fhow-to-show-the-equivalence-between-the-regularized-regression-and-their-constra%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                    How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2

                    Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її