Relation between independence and correlation of uniform random variablesCorrelations with a linear combination means correlation with individual variables?Geometric mean of uniform variablesHow to Test Independence of Poisson Variables?If $X$ and $Y$ are normally distributed random variables, what kind of distribution their sum follows?Distribution of X-U(0,1) conditioned on sigma algebra of Y/X, where is Y is U(0,1)?Is there a parametric joint distribution such that $X$ and $Y$ are both uniform and $mathbbE[Y ;|; X]$ is linear?Are two Random Variables Independent if their support has a dependency?Correlation of the sigmoid function of normal random varaiblesIntuitive reason why jointly normal and uncorrelated imply independenceConditional maximum likelihood of AR(1) UNIFORM PROCESS

Bash - pair each line of file

Does the attack bonus from a Masterwork weapon stack with the attack bonus from Masterwork ammunition?

Turning a hard to access nut?

How could an airship be repaired midflight?

Matrix using tikz package

gerund and noun applications

What exactly term 'companion plants' means?

Does multi-classing into Fighter give you heavy armor proficiency?

In Aliens, how many people were on LV-426 before the Marines arrived​?

Print a physical multiplication table

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

Variable completely messes up echoed string

How is the partial sum of a geometric sequence calculated?

What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?

A Ri-diddley-iley Riddle

Is a party consisting of only a bard, a cleric, and a warlock functional long-term?

In what cases must I use 了 and in what cases not?

Existence of a celestial body big enough for early civilization to be thought of as a second moon

How do hiring committees for research positions view getting "scooped"?

Usage and meaning of "up" in "...worth at least a thousand pounds up in London"

What (if any) is the reason to buy in small local stores?

Knife as defense against stray dogs

Can other pieces capture a threatening piece and prevent a checkmate?

How can an organ that provides biological immortality be unable to regenerate?



Relation between independence and correlation of uniform random variables


Correlations with a linear combination means correlation with individual variables?Geometric mean of uniform variablesHow to Test Independence of Poisson Variables?If $X$ and $Y$ are normally distributed random variables, what kind of distribution their sum follows?Distribution of X-U(0,1) conditioned on sigma algebra of Y/X, where is Y is U(0,1)?Is there a parametric joint distribution such that $X$ and $Y$ are both uniform and $mathbbE[Y ;|; X]$ is linear?Are two Random Variables Independent if their support has a dependency?Correlation of the sigmoid function of normal random varaiblesIntuitive reason why jointly normal and uncorrelated imply independenceConditional maximum likelihood of AR(1) UNIFORM PROCESS













1












$begingroup$


My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



    I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



      I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.










      share|cite|improve this question









      $endgroup$




      My question is fairly simple: let $X$ and $Y$ be two uncorrelated uniform random variables on $[-1,1]$. Are they independent?



      I was under the impression that two random, uncorrelated variables are only necessarily independent if their joint distribution is normal, however I can't come up with a counterexample to disprove the claim I ask about. Either a counterexample or a proof would be greatly appreciated.







      correlation independence uniform






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      PeiffapPeiffap

      153




      153




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "65"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398050%2frelation-between-independence-and-correlation-of-uniform-random-variables%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago















          5












          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago













          5












          5








          5





          $begingroup$

          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)






          share|cite|improve this answer











          $endgroup$



          Independent implies uncorrelated but the implication doesn't go the other way.



          Uncorrelated implies independence only under certain conditions. e.g. if you have a bivariate normal, it is the case that uncorrelated implies independent (as you said).



          It is easy to construct bivariate distributions with uniform margins where the variables are uncorrelated but are not independent. Here are a few examples:



          1. consider an additional random variable $B$ which takes the values $pm 1$ each with probability $frac12$, independent of $X$. Then let $Y=BX$.


          2. take the bivariate distribution of two independent uniforms and slice it in 4 equal-size sections on each margin (yielding $4times 4=16$ pieces, each of size $frac12timesfrac12$). Now take all the probability from the 4 corner pieces and the 4 center pieces and put it evenly into the other 8 pieces.


          3. Let $Y = 2|X|-1$.


          In each case, the variables are uncorrelated but not independent (e.g. if $X=1$, what is $P(-0.1<Y<0.1$?)



          Plot of bivariate distribution for each case



          If you specify some particular family of bivariate distributions with uniform margins it might be possible that under that formulation the only uncorrelated one is independent. Then under that condition, being uncorrelated would imply independence -- but you haven't said anything about the bivariate distribution, only about the marginal distributions.



          For example, if you restrict your attention to say the Gaussian copula, then I think the only uncorrelated one has independent margins; you can readily rescale that so that each margin is on (-1,1).




          Some R code for sampling from and plotting these bivariates (not necessarily efficiently):



          n <- 100000
          x <- runif(n,-1,1)
          b <- rbinom(n,1,.5)*2-1
          y1 <-b*x
          y2 <-ifelse(0.5<abs(x)&abs(x)<1,
          runif(n,-.5,.5),
          runif(n,0.5,1)*b
          )
          y3 <- 2*abs(x)-1

          par(mfrow=c(1,3))
          plot(x,y1,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))
          plot(x,y2,pch=16,cex=.5,col=rgb(.5,.5,.5,.5))
          abline(h=c(-1,-.5,0,.5,1),col=4,lty=3)
          abline(v=c(-1,-.5,0,.5,1),col=4,lty=3)
          plot(x,y3,pch=16,cex=.3,col=rgb(.5,.5,.5,.5))


          (In this formulation, $(Y_2, Y_3)$ gives a fourth example)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 37 mins ago

























          answered 1 hour ago









          Glen_bGlen_b

          213k22413763




          213k22413763











          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago
















          • $begingroup$
            Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
            $endgroup$
            – Peiffap
            1 hour ago











          • $begingroup$
            Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
            $endgroup$
            – Glen_b
            1 hour ago











          • $begingroup$
            They make it visually clearer, yes. Thank you, again.
            $endgroup$
            – Peiffap
            1 hour ago















          $begingroup$
          Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
          $endgroup$
          – Peiffap
          1 hour ago





          $begingroup$
          Thank you. I'm struggling to see why the examples you provided still guarantee that $Y$ is uniformly distributed on $[-1, 1]$, though.
          $endgroup$
          – Peiffap
          1 hour ago













          $begingroup$
          Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
          $endgroup$
          – Glen_b
          1 hour ago





          $begingroup$
          Do the plots of the bivariate densities help? In each case the shaded parts are all of constant density
          $endgroup$
          – Glen_b
          1 hour ago













          $begingroup$
          They make it visually clearer, yes. Thank you, again.
          $endgroup$
          – Peiffap
          1 hour ago




          $begingroup$
          They make it visually clearer, yes. Thank you, again.
          $endgroup$
          – Peiffap
          1 hour ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398050%2frelation-between-independence-and-correlation-of-uniform-random-variables%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

          Nissan Patrol Зміст Перше покоління — 4W60 (1951-1960) | Друге покоління — 60 series (1960-1980) | Третє покоління (1980–2002) | Четверте покоління — Y60 (1987–1998) | П'яте покоління — Y61 (1997–2013) | Шосте покоління — Y62 (2010- ) | Посилання | Зноски | Навігаційне менюОфіційний український сайтТест-драйв Nissan Patrol 2010 7-го поколінняNissan PatrolКак мы тестировали Nissan Patrol 2016рвиправивши або дописавши її

          Best approach to update all entries in a list that is paginated?Best way to add items to a paginated listChoose Your Country: Best Usability approachUpdate list when a user is viewing the list without annoying themWhen would the best day to update your webpage be?What should happen when I add a Row to a paginated, sorted listShould I adopt infinite scrolling or classical pagination?How to show user that page objects automatically updateWhat is the best location to locate the comments section in a list pageBest way to combine filtering and selecting items in a listWhen one of two inputs must be updated to satisfy a consistency criteria, which should you update (if at all)?