calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Understanding inverse trigonometric relationsFinding a point on the unit circle; more specifically, what quadrant it is inBroken Calculator: only certain unary functions work.How does the unit circle work for trigonometric ratios of non-acute angles?unit circle trigonometry where angle is greater than 90 degrees.Why are the Trig functions defined by the counterclockwise path of a circle?Trigonometric Ratios for angles greater than 90 degrees and the Unit CircleIf $sinx=t, quad xin(frac3pi2,2pi),$ what is $tanx?$Trigonometric Ratios for angles greater than 90 degrees in unit circleHow does the unit circle work for trigonometric ratios of obtuse angles?Why we need an angle to for trig ratios?

French equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

Inverse square law not accurate for non-point masses?

3D Masyu - A Die

malloc in main() or malloc in another function: allocating memory for a struct and its members

How to infer difference of population proportion between two groups when proportion is small?

Noise in Eigenvalues plot

How do I say "this must not happen"?

How to achieve cat-like agility?

How do you write "wild blueberries flavored"?

Does the Rock Gnome trait Artificer's Lore apply when you aren't proficient in History?

How to make triangles with rounded sides and corners? (squircle with 3 sides)

What did Turing mean when saying that "machines cannot give rise to surprises" is due to a fallacy?

Do i imagine the linear (straight line) homotopy in a correct way?

Improvising over quartal voicings

Getting representations of the Lie group out of representations of its Lie algebra

How do Java 8 default methods hеlp with lambdas?

Simple Line in LaTeX Help!

Can gravitational waves pass through a black hole?

Why not use the yoke to control yaw, as well as pitch and roll?

What are some likely causes to domain member PC losing contact to domain controller?

What was the last profitable war?

Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?

How to name indistinguishable henchmen in a screenplay?

Where did Ptolemy compare the Earth to the distance of fixed stars?



calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Understanding inverse trigonometric relationsFinding a point on the unit circle; more specifically, what quadrant it is inBroken Calculator: only certain unary functions work.How does the unit circle work for trigonometric ratios of non-acute angles?unit circle trigonometry where angle is greater than 90 degrees.Why are the Trig functions defined by the counterclockwise path of a circle?Trigonometric Ratios for angles greater than 90 degrees and the Unit CircleIf $sinx=t, quad xin(frac3pi2,2pi),$ what is $tanx?$Trigonometric Ratios for angles greater than 90 degrees in unit circleHow does the unit circle work for trigonometric ratios of obtuse angles?Why we need an angle to for trig ratios?










5












$begingroup$


  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise


ie. in degree mode



$cos^-1(-5/12)=114.62$



$sin^-1(-5/12)=-24.62$



$tan^-1(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    3 hours ago







  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
    $endgroup$
    – man on laptop
    3 hours ago











  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    2 hours ago















5












$begingroup$


  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise


ie. in degree mode



$cos^-1(-5/12)=114.62$



$sin^-1(-5/12)=-24.62$



$tan^-1(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    3 hours ago







  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
    $endgroup$
    – man on laptop
    3 hours ago











  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    2 hours ago













5












5








5





$begingroup$


  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise


ie. in degree mode



$cos^-1(-5/12)=114.62$



$sin^-1(-5/12)=-24.62$



$tan^-1(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise


ie. in degree mode



$cos^-1(-5/12)=114.62$



$sin^-1(-5/12)=-24.62$



$tan^-1(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?







trigonometry






share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









N. F. Taussig

45.5k103358




45.5k103358






New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









Allan HenriquesAllan Henriques

334




334




New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    3 hours ago







  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
    $endgroup$
    – man on laptop
    3 hours ago











  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    2 hours ago












  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    3 hours ago







  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
    $endgroup$
    – man on laptop
    3 hours ago











  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    2 hours ago







1




1




$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
3 hours ago





$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
3 hours ago





2




2




$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
3 hours ago





$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
3 hours ago













$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 hours ago




$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 hours ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    3 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196538%2fcalculators-angle-answer-for-trig-ratios-that-can-work-in-more-than-1-quadrant%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    3 hours ago















3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    3 hours ago













3












3








3





$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$



This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.



enter image description here







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 3 hours ago









DMcMorDMcMor

2,99321328




2,99321328







  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    3 hours ago












  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    3 hours ago







2




2




$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
3 hours ago




$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
3 hours ago










Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.












Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.











Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196538%2fcalculators-angle-answer-for-trig-ratios-that-can-work-in-more-than-1-quadrant%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Magento 2 duplicate PHPSESSID cookie when using session_start() in custom php scriptMagento 2: User cant logged in into to account page, no error showing!Magento duplicate on subdomainGrabbing storeview from cookie (after using language selector)How do I run php custom script on magento2Magento 2: Include PHP script in headerSession lock after using Cm_RedisSessionscript php to update stockMagento set cookie popupMagento 2 session id cookie - where to find it?How to import Configurable product from csv with custom attributes using php scriptMagento 2 run custom PHP script

Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2