Proving inequality for positive definite matrix Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Eigenvalues of A+B where A is symmetric positive definite and B is diagonalA spectral inequality for positive-definite matrices Showing positive stability of a matrix constructed from a positive matrixCondition number after some “non standard” transformProve that matrix is positive definiteInequality between nuclear norm and operator norm for positive definite matricesStability of a matrix productInverse of a matrix and the inverse of its diagonalsMaximum rotation made by a symmetric positive definite matrix?Angle induced by inverse matrix

Proving inequality for positive definite matrix



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Eigenvalues of A+B where A is symmetric positive definite and B is diagonalA spectral inequality for positive-definite matrices Showing positive stability of a matrix constructed from a positive matrixCondition number after some “non standard” transformProve that matrix is positive definiteInequality between nuclear norm and operator norm for positive definite matricesStability of a matrix productInverse of a matrix and the inverse of its diagonalsMaximum rotation made by a symmetric positive definite matrix?Angle induced by inverse matrix










2












$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x geq fracx^T A x_2$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ fracA^1/4x < frac^2Ax iff\ fracAx < frac^2A^1/4x $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < frac^2^2 iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(frac3 lambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    37 mins ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    31 mins ago
















2












$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x geq fracx^T A x_2$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ fracA^1/4x < frac^2Ax iff\ fracAx < frac^2A^1/4x $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < frac^2^2 iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(frac3 lambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    37 mins ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    31 mins ago














2












2








2





$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x geq fracx^T A x_2$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x geq fracx^T A x_2$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$







linear-algebra






share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 20 mins ago









B Merlot

725




725






New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









ReginaldReginald

186




186




New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ fracA^1/4x < frac^2Ax iff\ fracAx < frac^2A^1/4x $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < frac^2^2 iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(frac3 lambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    37 mins ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    31 mins ago













  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ fracA^1/4x < frac^2Ax iff\ fracAx < frac^2A^1/4x $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < frac^2^2 iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(frac3 lambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    37 mins ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    31 mins ago








3




3




$begingroup$
A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ fracA^1/4x < frac^2Ax iff\ fracAx < frac^2A^1/4x $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < frac^2^2 iff |B^3y|,,|y|^2 < |By|^3 $$
$endgroup$
– Omnomnomnom
1 hour ago




$begingroup$
A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ fracA^1/4x < frac^2Ax iff\ fracAx < frac^2A^1/4x $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < frac^2^2 iff |B^3y|,,|y|^2 < |By|^3 $$
$endgroup$
– Omnomnomnom
1 hour ago




1




1




$begingroup$
Also, note that we fail to have strict inequality when $A = I$, for instance.
$endgroup$
– Omnomnomnom
1 hour ago




$begingroup$
Also, note that we fail to have strict inequality when $A = I$, for instance.
$endgroup$
– Omnomnomnom
1 hour ago




1




1




$begingroup$
More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(frac3 lambda I - B^4right)y = 0 $$
$endgroup$
– Omnomnomnom
37 mins ago





$begingroup$
More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(frac3 lambda I - B^4right)y = 0 $$
$endgroup$
– Omnomnomnom
37 mins ago





1




1




$begingroup$
Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
$endgroup$
– Omnomnomnom
31 mins ago





$begingroup$
Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
$endgroup$
– Omnomnomnom
31 mins ago











1 Answer
1






active

oldest

votes


















4












$begingroup$

Your inequality says



$$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

or after a simple transformation
$$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
left(sumlambda_j^2x_j^2right)^1/3$$

And this is Holder's inequality with
$p=3/2$ and $q=3$. The strict inequality does not always hold.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Reginald is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328694%2fproving-inequality-for-positive-definite-matrix%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Your inequality says



    $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
    fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

    or after a simple transformation
    $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
    left(sumlambda_j^2x_j^2right)^1/3$$

    And this is Holder's inequality with
    $p=3/2$ and $q=3$. The strict inequality does not always hold.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      Your inequality says



      $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
      fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

      or after a simple transformation
      $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
      left(sumlambda_j^2x_j^2right)^1/3$$

      And this is Holder's inequality with
      $p=3/2$ and $q=3$. The strict inequality does not always hold.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        Your inequality says



        $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
        fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

        or after a simple transformation
        $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
        left(sumlambda_j^2x_j^2right)^1/3$$

        And this is Holder's inequality with
        $p=3/2$ and $q=3$. The strict inequality does not always hold.






        share|cite|improve this answer









        $endgroup$



        Your inequality says



        $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
        fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

        or after a simple transformation
        $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
        left(sumlambda_j^2x_j^2right)^1/3$$

        And this is Holder's inequality with
        $p=3/2$ and $q=3$. The strict inequality does not always hold.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 30 mins ago









        Alexandre EremenkoAlexandre Eremenko

        51.7k6144263




        51.7k6144263




















            Reginald is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Reginald is a new contributor. Be nice, and check out our Code of Conduct.












            Reginald is a new contributor. Be nice, and check out our Code of Conduct.











            Reginald is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328694%2fproving-inequality-for-positive-definite-matrix%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Magento 2 duplicate PHPSESSID cookie when using session_start() in custom php scriptMagento 2: User cant logged in into to account page, no error showing!Magento duplicate on subdomainGrabbing storeview from cookie (after using language selector)How do I run php custom script on magento2Magento 2: Include PHP script in headerSession lock after using Cm_RedisSessionscript php to update stockMagento set cookie popupMagento 2 session id cookie - where to find it?How to import Configurable product from csv with custom attributes using php scriptMagento 2 run custom PHP script

            Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

            How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2