Notation for two qubit composite product state Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Compute average value of two-qubit systemWhat can I deduce about $f(x)$ if $f$ is balanced or constant?What does the notation $lvert underlinex rangle$ mean?How do I show that a two-qubit state is an entangled state?How is a single qubit fundamentally different from a classical coin spinning in the air?Why is the state of multiple qubits given by their tensor product?Notation for two entangled registersA question about notation for quantum statesA two qubit state in a special formConcurrence for a two qubit state

Estimated State payment too big --> money back; + 2018 Tax Reform

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Can't figure this one out.. What is the missing box?

What did Darwin mean by 'squib' here?

Can the prologue be the backstory of your main character?

Writing Thesis: Copying from published papers

Statistical model of ligand substitution

Stars Make Stars

Is there folklore associating late breastfeeding with low intelligence and/or gullibility?

How to rotate it perfectly?

Why is there no army of Iron-Mans in the MCU?

Slither Like a Snake

What do you call a plan that's an alternative plan in case your initial plan fails?

How many spell slots should a Fighter 11/Ranger 9 have?

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?

What computer would be fastest for Mathematica Home Edition?

Estimate capacitor parameters

Does a C shift expression have unsigned type? Why would Splint warn about a right-shift?

Aligning matrix of nodes with grid

Do working physicists consider Newtonian mechanics to be "falsified"?

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

How should I respond to a player wanting to catch a sword between their hands?

Can a 1st-level character have an ability score above 18?

Stop battery usage [Ubuntu 18]



Notation for two qubit composite product state



Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Compute average value of two-qubit systemWhat can I deduce about $f(x)$ if $f$ is balanced or constant?What does the notation $lvert underlinex rangle$ mean?How do I show that a two-qubit state is an entangled state?How is a single qubit fundamentally different from a classical coin spinning in the air?Why is the state of multiple qubits given by their tensor product?Notation for two entangled registersA question about notation for quantum statesA two qubit state in a special formConcurrence for a two qubit state



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $beginpmatrix 1 & 1 \ 0 & 0 endpmatrix$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.



Could anyone clarify this for me, please?



Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $beginpmatrix 1 \ 0\0\0 endpmatrix$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?










share|improve this question









New contributor




can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$


















    2












    $begingroup$


    In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $beginpmatrix 1 & 1 \ 0 & 0 endpmatrix$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.



    Could anyone clarify this for me, please?



    Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $beginpmatrix 1 \ 0\0\0 endpmatrix$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?










    share|improve this question









    New contributor




    can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      2












      2








      2





      $begingroup$


      In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $beginpmatrix 1 & 1 \ 0 & 0 endpmatrix$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.



      Could anyone clarify this for me, please?



      Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $beginpmatrix 1 \ 0\0\0 endpmatrix$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?










      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $beginpmatrix 1 & 1 \ 0 & 0 endpmatrix$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.



      Could anyone clarify this for me, please?



      Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $beginpmatrix 1 \ 0\0\0 endpmatrix$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?







      quantum-state tensor-product notation






      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 1 hour ago









      Sanchayan Dutta

      6,66641556




      6,66641556






      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 3 hours ago









      can'tcauchycan'tcauchy

      1135




      1135




      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




          In mathematics, the Kronecker product, denoted by $otimes$, is an operation
          on two matrices of arbitrary size resulting in a block matrix. It is a
          generalization of the outer product (which is denoted by the same
          symbol) from vectors to matrices, and gives the matrix of the tensor
          product with respect to a standard choice of basis
          . The Kronecker
          product should not be confused with the usual matrix multiplication,
          which is an entirely different operation
          .




          Now the standard choice of basis for a two-qubit system is:



          $10rangle = beginbmatrix 0 \ 0 \ 1 \ 0 endbmatrix, $



          If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



          $11rangle = beginbmatrix 0 & 0 \ 0 & 1 endbmatrix$



          but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



          The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



          P.S: Kronecker product and outer product confusion






          share|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "694"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5911%2fnotation-for-two-qubit-composite-product-state%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




            In mathematics, the Kronecker product, denoted by $otimes$, is an operation
            on two matrices of arbitrary size resulting in a block matrix. It is a
            generalization of the outer product (which is denoted by the same
            symbol) from vectors to matrices, and gives the matrix of the tensor
            product with respect to a standard choice of basis
            . The Kronecker
            product should not be confused with the usual matrix multiplication,
            which is an entirely different operation
            .




            Now the standard choice of basis for a two-qubit system is:



            $10rangle = beginbmatrix 0 \ 0 \ 1 \ 0 endbmatrix, $



            If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



            $11rangle = beginbmatrix 0 & 0 \ 0 & 1 endbmatrix$



            but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



            The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



            P.S: Kronecker product and outer product confusion






            share|improve this answer











            $endgroup$

















              1












              $begingroup$

              $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




              In mathematics, the Kronecker product, denoted by $otimes$, is an operation
              on two matrices of arbitrary size resulting in a block matrix. It is a
              generalization of the outer product (which is denoted by the same
              symbol) from vectors to matrices, and gives the matrix of the tensor
              product with respect to a standard choice of basis
              . The Kronecker
              product should not be confused with the usual matrix multiplication,
              which is an entirely different operation
              .




              Now the standard choice of basis for a two-qubit system is:



              $10rangle = beginbmatrix 0 \ 0 \ 1 \ 0 endbmatrix, $



              If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



              $11rangle = beginbmatrix 0 & 0 \ 0 & 1 endbmatrix$



              but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



              The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



              P.S: Kronecker product and outer product confusion






              share|improve this answer











              $endgroup$















                1












                1








                1





                $begingroup$

                $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




                In mathematics, the Kronecker product, denoted by $otimes$, is an operation
                on two matrices of arbitrary size resulting in a block matrix. It is a
                generalization of the outer product (which is denoted by the same
                symbol) from vectors to matrices, and gives the matrix of the tensor
                product with respect to a standard choice of basis
                . The Kronecker
                product should not be confused with the usual matrix multiplication,
                which is an entirely different operation
                .




                Now the standard choice of basis for a two-qubit system is:



                $10rangle = beginbmatrix 0 \ 0 \ 1 \ 0 endbmatrix, $



                If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



                $11rangle = beginbmatrix 0 & 0 \ 0 & 1 endbmatrix$



                but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



                The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



                P.S: Kronecker product and outer product confusion






                share|improve this answer











                $endgroup$



                $|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $beginbmatrix 1 \ 0 endbmatrix otimes beginbmatrix 1 \ 0endbmatrix $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:




                In mathematics, the Kronecker product, denoted by $otimes$, is an operation
                on two matrices of arbitrary size resulting in a block matrix. It is a
                generalization of the outer product (which is denoted by the same
                symbol) from vectors to matrices, and gives the matrix of the tensor
                product with respect to a standard choice of basis
                . The Kronecker
                product should not be confused with the usual matrix multiplication,
                which is an entirely different operation
                .




                Now the standard choice of basis for a two-qubit system is:



                $10rangle = beginbmatrix 0 \ 0 \ 1 \ 0 endbmatrix, $



                If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):



                $11rangle = beginbmatrix 0 & 0 \ 0 & 1 endbmatrix$



                but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).



                The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!



                P.S: Kronecker product and outer product confusion







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 2 hours ago

























                answered 2 hours ago









                Sanchayan DuttaSanchayan Dutta

                6,66641556




                6,66641556




















                    can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.












                    can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.











                    can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Quantum Computing Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5911%2fnotation-for-two-qubit-composite-product-state%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Magento 2 duplicate PHPSESSID cookie when using session_start() in custom php scriptMagento 2: User cant logged in into to account page, no error showing!Magento duplicate on subdomainGrabbing storeview from cookie (after using language selector)How do I run php custom script on magento2Magento 2: Include PHP script in headerSession lock after using Cm_RedisSessionscript php to update stockMagento set cookie popupMagento 2 session id cookie - where to find it?How to import Configurable product from csv with custom attributes using php scriptMagento 2 run custom PHP script

                    Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                    How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2