Example of a continuous function that don't have a continuous extensionExtending a continuous function defined on the rationalsLet $Asubset X$; let $f:Ato Y$ be continuous; let $Y$ be Hausdorff. Is there an example where there is no continuous function for $g$?Continuity of a product of two real valued continuous function.a counter example of extension of a continuous functionInverse of a continuous functionIf $Asubseteqmathbb R$ is closed and $f:Atomathbb R$ is right-continuous, is there a right-continuous extension of $f$ to $mathbb R$?Proving Topological Equivalence without finding a functionA function that can be continuously extended is continuousContinuous Extension of Densely Defined Continuous (but not Uniformly Continuous) Function.A topological space with the Universal Extension Property which is not homeomorphic to a retract of $mathbbR^J$?

Why not use SQL instead of GraphQL?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

What do you call a Matrix-like slowdown and camera movement effect?

Why was the small council so happy for Tyrion to become the Master of Coin?

Is it unprofessional to ask if a job posting on GlassDoor is real?

What are the differences between the usage of 'it' and 'they'?

"You are your self first supporter", a more proper way to say it

Arthur Somervell: 1000 Exercises - Meaning of this notation

Writing rule stating superpower from different root cause is bad writing

Dragon forelimb placement

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Languages that we cannot (dis)prove to be Context-Free

The use of multiple foreign keys on same column in SQL Server

What's the output of a record cartridge playing an out-of-speed record

Why, historically, did Gödel think CH was false?

Why doesn't H₄O²⁺ exist?

What typically incentivizes a professor to change jobs to a lower ranking university?

Today is the Center

Why don't electron-positron collisions release infinite energy?

TGV timetables / schedules?

Has the BBC provided arguments for saying Brexit being cancelled is unlikely?

Is it important to consider tone, melody, and musical form while writing a song?

How much RAM could one put in a typical 80386 setup?

Have astronauts in space suits ever taken selfies? If so, how?



Example of a continuous function that don't have a continuous extension


Extending a continuous function defined on the rationalsLet $Asubset X$; let $f:Ato Y$ be continuous; let $Y$ be Hausdorff. Is there an example where there is no continuous function for $g$?Continuity of a product of two real valued continuous function.a counter example of extension of a continuous functionInverse of a continuous functionIf $Asubseteqmathbb R$ is closed and $f:Atomathbb R$ is right-continuous, is there a right-continuous extension of $f$ to $mathbb R$?Proving Topological Equivalence without finding a functionA function that can be continuously extended is continuousContinuous Extension of Densely Defined Continuous (but not Uniformly Continuous) Function.A topological space with the Universal Extension Property which is not homeomorphic to a retract of $mathbbR^J$?













3












$begingroup$



Give an example of a topological space $(X,tau)$, a subset $Asubset X$ that is dense in $X$ (i.e., $overlineA = X$), and a continuous function $f:AtomathbbR$ that cannot be continually extended to $X$, that is, a $f$ for such do not exist a continuous function $g:Xto mathbbR$ such that $f(x) = g(x)$ for all $xin A$.




I just proved that if $f,g:XtomathbbR$ are continuous and agree in a dense subset $Asubset X$ then they're equal.



I thought in $X=mathbbR$ with usual topology and $A = mathbbR-0 =:mathbbR^* $, so I think $f:mathbbR^*tomathbbR, f(x) = x^-1$ is a continuous function that cannot be continually extended to $mathbbR$. I'm quite sure of this, but I'm stuck in proving it using the definition of continuity in general topological spaces.



Also, I'm quite confused on how this asked example is not a counterexample of what I proved.



Thanks in advance.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
    $endgroup$
    – Melody
    1 hour ago















3












$begingroup$



Give an example of a topological space $(X,tau)$, a subset $Asubset X$ that is dense in $X$ (i.e., $overlineA = X$), and a continuous function $f:AtomathbbR$ that cannot be continually extended to $X$, that is, a $f$ for such do not exist a continuous function $g:Xto mathbbR$ such that $f(x) = g(x)$ for all $xin A$.




I just proved that if $f,g:XtomathbbR$ are continuous and agree in a dense subset $Asubset X$ then they're equal.



I thought in $X=mathbbR$ with usual topology and $A = mathbbR-0 =:mathbbR^* $, so I think $f:mathbbR^*tomathbbR, f(x) = x^-1$ is a continuous function that cannot be continually extended to $mathbbR$. I'm quite sure of this, but I'm stuck in proving it using the definition of continuity in general topological spaces.



Also, I'm quite confused on how this asked example is not a counterexample of what I proved.



Thanks in advance.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
    $endgroup$
    – Melody
    1 hour ago













3












3








3





$begingroup$



Give an example of a topological space $(X,tau)$, a subset $Asubset X$ that is dense in $X$ (i.e., $overlineA = X$), and a continuous function $f:AtomathbbR$ that cannot be continually extended to $X$, that is, a $f$ for such do not exist a continuous function $g:Xto mathbbR$ such that $f(x) = g(x)$ for all $xin A$.




I just proved that if $f,g:XtomathbbR$ are continuous and agree in a dense subset $Asubset X$ then they're equal.



I thought in $X=mathbbR$ with usual topology and $A = mathbbR-0 =:mathbbR^* $, so I think $f:mathbbR^*tomathbbR, f(x) = x^-1$ is a continuous function that cannot be continually extended to $mathbbR$. I'm quite sure of this, but I'm stuck in proving it using the definition of continuity in general topological spaces.



Also, I'm quite confused on how this asked example is not a counterexample of what I proved.



Thanks in advance.










share|cite|improve this question









$endgroup$





Give an example of a topological space $(X,tau)$, a subset $Asubset X$ that is dense in $X$ (i.e., $overlineA = X$), and a continuous function $f:AtomathbbR$ that cannot be continually extended to $X$, that is, a $f$ for such do not exist a continuous function $g:Xto mathbbR$ such that $f(x) = g(x)$ for all $xin A$.




I just proved that if $f,g:XtomathbbR$ are continuous and agree in a dense subset $Asubset X$ then they're equal.



I thought in $X=mathbbR$ with usual topology and $A = mathbbR-0 =:mathbbR^* $, so I think $f:mathbbR^*tomathbbR, f(x) = x^-1$ is a continuous function that cannot be continually extended to $mathbbR$. I'm quite sure of this, but I'm stuck in proving it using the definition of continuity in general topological spaces.



Also, I'm quite confused on how this asked example is not a counterexample of what I proved.



Thanks in advance.







general-topology continuity






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









AnalyticHarmonyAnalyticHarmony

689313




689313







  • 1




    $begingroup$
    The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
    $endgroup$
    – Melody
    1 hour ago












  • 1




    $begingroup$
    The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
    $endgroup$
    – Melody
    1 hour ago







1




1




$begingroup$
The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
$endgroup$
– Melody
1 hour ago




$begingroup$
The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
$endgroup$
– Melody
1 hour ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



    Now, drawing a picture will make the following obvious:



    Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



    If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177651%2fexample-of-a-continuous-function-that-dont-have-a-continuous-extension%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



      One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




      BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result






      share|cite|improve this answer











      $endgroup$

















        2












        $begingroup$

        Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



        One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




        BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result






        share|cite|improve this answer











        $endgroup$















          2












          2








          2





          $begingroup$

          Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



          One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




          BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result






          share|cite|improve this answer











          $endgroup$



          Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



          One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




          BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          NazimJNazimJ

          77019




          77019





















              1












              $begingroup$

              Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



              Now, drawing a picture will make the following obvious:



              Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



              If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



                Now, drawing a picture will make the following obvious:



                Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



                If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



                  Now, drawing a picture will make the following obvious:



                  Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



                  If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$






                  share|cite|improve this answer









                  $endgroup$



                  Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



                  Now, drawing a picture will make the following obvious:



                  Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



                  If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 27 mins ago









                  MatematletaMatematleta

                  12.1k21020




                  12.1k21020



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177651%2fexample-of-a-continuous-function-that-dont-have-a-continuous-extension%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Magento 2 duplicate PHPSESSID cookie when using session_start() in custom php scriptMagento 2: User cant logged in into to account page, no error showing!Magento duplicate on subdomainGrabbing storeview from cookie (after using language selector)How do I run php custom script on magento2Magento 2: Include PHP script in headerSession lock after using Cm_RedisSessionscript php to update stockMagento set cookie popupMagento 2 session id cookie - where to find it?How to import Configurable product from csv with custom attributes using php scriptMagento 2 run custom PHP script

                      Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                      How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2