Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal

Can elves maintain concentration in a trance?

Provisioning profile doesn't include the application-identifier and keychain-access-groups entitlements

How could a female member of a species produce eggs unto death?

How do I hide Chekhov's Gun?

I need to drive a 7/16" nut but am unsure how to use the socket I bought for my screwdriver

Did CPM support custom hardware using device drivers?

Life insurance that covers only simultaneous/dual deaths

Have researchers managed to "reverse time"? If so, what does that mean for physics?

Why must traveling waves have the same amplitude to form a standing wave?

Why using two cd commands in bash script does not execute the second command

Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?

RegionDifference for Cylinder and Cuboid

Will a pinhole camera work with instant film?

What has been your most complicated TikZ drawing?

Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?

Why do passenger jet manufacturers design their planes with stall prevention systems?

Why did it take so long to abandon sail after steamships were demonstrated?

What is the greatest age difference between a married couple in Tanach?

Replacing Windows 7 security updates with anti-virus?

Know when to turn notes upside-down(eighth notes, sixteen notes, etc.)

2D counterpart of std::array in C++17

Instead of Universal Basic Income, why not Universal Basic NEEDS?

Co-worker team leader wants to inject his friend's awful software into our development. What should I say to our common boss?

Welcoming 2019 Pi day: How to draw the letter π?



Does this property of comaximal ideals always holds?


Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal













5












$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    1 hour ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    1 hour ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    1 hour ago
















5












$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    1 hour ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    1 hour ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    1 hour ago














5












5








5


1



$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$




I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?







abstract-algebra ring-theory commutative-algebra maximal-and-prime-ideals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









Math LoverMath Lover

1,029315




1,029315











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    1 hour ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    1 hour ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    1 hour ago

















  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    1 hour ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    1 hour ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    1 hour ago
















$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
1 hour ago




$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
1 hour ago












$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
1 hour ago




$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
1 hour ago




1




1




$begingroup$
Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
1 hour ago





$begingroup$
Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
1 hour ago











2 Answers
2






active

oldest

votes


















5












$begingroup$

First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



    Therefore, that property is not satisfied in general.



    Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.






    share|cite|improve this answer











    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148803%2fdoes-this-property-of-comaximal-ideals-always-holds%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



      Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




      Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






      share|cite|improve this answer











      $endgroup$

















        5












        $begingroup$

        First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



        Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




        Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






        share|cite|improve this answer











        $endgroup$















          5












          5








          5





          $begingroup$

          First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



          Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




          Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






          share|cite|improve this answer











          $endgroup$



          First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



          Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




          Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          Alex MathersAlex Mathers

          11.1k21344




          11.1k21344





















              2












              $begingroup$

              Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



              Therefore, that property is not satisfied in general.



              Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.






              share|cite|improve this answer











              $endgroup$

















                2












                $begingroup$

                Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                Therefore, that property is not satisfied in general.



                Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.






                share|cite|improve this answer











                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                  Therefore, that property is not satisfied in general.



                  Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.






                  share|cite|improve this answer











                  $endgroup$



                  Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                  Therefore, that property is not satisfied in general.



                  Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 15 mins ago

























                  answered 1 hour ago









                  user647486user647486

                  413




                  413



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148803%2fdoes-this-property-of-comaximal-ideals-always-holds%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Magento 2 duplicate PHPSESSID cookie when using session_start() in custom php scriptMagento 2: User cant logged in into to account page, no error showing!Magento duplicate on subdomainGrabbing storeview from cookie (after using language selector)How do I run php custom script on magento2Magento 2: Include PHP script in headerSession lock after using Cm_RedisSessionscript php to update stockMagento set cookie popupMagento 2 session id cookie - where to find it?How to import Configurable product from csv with custom attributes using php scriptMagento 2 run custom PHP script

                      Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                      How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2