Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low) temperature?How to determine the vapor pressure of a glycerine and propylene glycol mixture?Given the volumes: determine the pH and the final temperature of a mixture knowing only the initial pH and the temperature of the un-mixed componentsCan a solid and liquid be miscible?What elements and/or substances without water are liquid at room temperature?Using vapor mole fraction and pressure to determine liquid mole fractionHow could I find the solubility of hydrocarbons such as iso- and n-Butane in liquid Methane?Interpretation of miscibility curvesIs vapour pressure of a liquid solution constant at a given temperature, no matter the size of closed container and amount of liquid taken?Properties of azeotropesIs there a stable and non-toxic hydro-nitrogen-oxygen compound that's liquid in room temperature?

Did the UK lift the requirement for registering SIM cards?

Review your own paper in Mathematics

15% tax on $7.5k earnings. Is that right?

How do you make your own symbol when Detexify fails?

Taxes on Dividends in a Roth IRA

Change the color of a single dot in `ddot` symbol

Pre-mixing cryogenic fuels and using only one fuel tank

Does Doodling or Improvising on the Piano Have Any Benefits?

Shouldn’t conservatives embrace universal basic income?

Is there a RAID 0 Equivalent for RAM?

How to get directions in deep space?

Biological Blimps: Propulsion

How do I fix the group tension caused by my character stealing and possibly killing without provocation?

Why does AES have exactly 10 rounds for a 128-bit key, 12 for 192 bits and 14 for a 256-bit key size?

Why is the Sun approximated as a black body at ~ 5800 K?

Make a Bowl of Alphabet Soup

Multiplicative persistence

Why do some congregations only make noise at certain occasions of Haman?

Why should universal income be universal?

"Oh no!" in Latin

Which Article Helped Get Rid of Technobabble in RPGs?

Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?

Creating two special characters

How to make money from a browser who sees 5 seconds into the future of any web page?



Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low) temperature?


How to determine the vapor pressure of a glycerine and propylene glycol mixture?Given the volumes: determine the pH and the final temperature of a mixture knowing only the initial pH and the temperature of the un-mixed componentsCan a solid and liquid be miscible?What elements and/or substances without water are liquid at room temperature?Using vapor mole fraction and pressure to determine liquid mole fractionHow could I find the solubility of hydrocarbons such as iso- and n-Butane in liquid Methane?Interpretation of miscibility curvesIs vapour pressure of a liquid solution constant at a given temperature, no matter the size of closed container and amount of liquid taken?Properties of azeotropesIs there a stable and non-toxic hydro-nitrogen-oxygen compound that's liquid in room temperature?













3












$begingroup$


This answer to the question Pre-mixing cryogenic fuels and using only one fuel tank written by a non-chemist (me) begins with:




At STP:



  • LOX's boiling point is 90.19 K

  • Methane's freezing point is 90.7 K

This does not a priori prove that a solution of the two can not exist. However it does mean that they can not be handled as liquids at the same temperature, making mixing the two more difficult.



We know that liquid air exists which shows that LOX and LN2 can mix together. But methane is an organic molecules and we know that heavier $textC_n textH_2n+2$ hydrocarbons include oils and waxes don't like to dissolve in non-organic solvents.




A stoichiometric mixture of oxygen and methane would be 2:1 molar:



$$ce 2O2 + CH4 -> CO2 + 2H2O $$



Though the two can not be conveniently maintained as liquids at the same temperature, can a stoichiometric mixture of the two exist as a liquid at some (low) temperature and standard pressure?










share|improve this question











$endgroup$







  • 1




    $begingroup$
    I am not sure if both the solutions and mixtures tags apply here.
    $endgroup$
    – uhoh
    4 hours ago






  • 2




    $begingroup$
    With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
    $endgroup$
    – Jon Custer
    3 hours ago






  • 1




    $begingroup$
    @JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
    $endgroup$
    – uhoh
    3 hours ago







  • 2




    $begingroup$
    just trying to whip it into a nice froth for my coffee in the morning...
    $endgroup$
    – Jon Custer
    3 hours ago















3












$begingroup$


This answer to the question Pre-mixing cryogenic fuels and using only one fuel tank written by a non-chemist (me) begins with:




At STP:



  • LOX's boiling point is 90.19 K

  • Methane's freezing point is 90.7 K

This does not a priori prove that a solution of the two can not exist. However it does mean that they can not be handled as liquids at the same temperature, making mixing the two more difficult.



We know that liquid air exists which shows that LOX and LN2 can mix together. But methane is an organic molecules and we know that heavier $textC_n textH_2n+2$ hydrocarbons include oils and waxes don't like to dissolve in non-organic solvents.




A stoichiometric mixture of oxygen and methane would be 2:1 molar:



$$ce 2O2 + CH4 -> CO2 + 2H2O $$



Though the two can not be conveniently maintained as liquids at the same temperature, can a stoichiometric mixture of the two exist as a liquid at some (low) temperature and standard pressure?










share|improve this question











$endgroup$







  • 1




    $begingroup$
    I am not sure if both the solutions and mixtures tags apply here.
    $endgroup$
    – uhoh
    4 hours ago






  • 2




    $begingroup$
    With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
    $endgroup$
    – Jon Custer
    3 hours ago






  • 1




    $begingroup$
    @JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
    $endgroup$
    – uhoh
    3 hours ago







  • 2




    $begingroup$
    just trying to whip it into a nice froth for my coffee in the morning...
    $endgroup$
    – Jon Custer
    3 hours ago













3












3








3





$begingroup$


This answer to the question Pre-mixing cryogenic fuels and using only one fuel tank written by a non-chemist (me) begins with:




At STP:



  • LOX's boiling point is 90.19 K

  • Methane's freezing point is 90.7 K

This does not a priori prove that a solution of the two can not exist. However it does mean that they can not be handled as liquids at the same temperature, making mixing the two more difficult.



We know that liquid air exists which shows that LOX and LN2 can mix together. But methane is an organic molecules and we know that heavier $textC_n textH_2n+2$ hydrocarbons include oils and waxes don't like to dissolve in non-organic solvents.




A stoichiometric mixture of oxygen and methane would be 2:1 molar:



$$ce 2O2 + CH4 -> CO2 + 2H2O $$



Though the two can not be conveniently maintained as liquids at the same temperature, can a stoichiometric mixture of the two exist as a liquid at some (low) temperature and standard pressure?










share|improve this question











$endgroup$




This answer to the question Pre-mixing cryogenic fuels and using only one fuel tank written by a non-chemist (me) begins with:




At STP:



  • LOX's boiling point is 90.19 K

  • Methane's freezing point is 90.7 K

This does not a priori prove that a solution of the two can not exist. However it does mean that they can not be handled as liquids at the same temperature, making mixing the two more difficult.



We know that liquid air exists which shows that LOX and LN2 can mix together. But methane is an organic molecules and we know that heavier $textC_n textH_2n+2$ hydrocarbons include oils and waxes don't like to dissolve in non-organic solvents.




A stoichiometric mixture of oxygen and methane would be 2:1 molar:



$$ce 2O2 + CH4 -> CO2 + 2H2O $$



Though the two can not be conveniently maintained as liquids at the same temperature, can a stoichiometric mixture of the two exist as a liquid at some (low) temperature and standard pressure?







solutions mixtures fuel liquids






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 3 hours ago







uhoh

















asked 4 hours ago









uhohuhoh

1,646839




1,646839







  • 1




    $begingroup$
    I am not sure if both the solutions and mixtures tags apply here.
    $endgroup$
    – uhoh
    4 hours ago






  • 2




    $begingroup$
    With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
    $endgroup$
    – Jon Custer
    3 hours ago






  • 1




    $begingroup$
    @JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
    $endgroup$
    – uhoh
    3 hours ago







  • 2




    $begingroup$
    just trying to whip it into a nice froth for my coffee in the morning...
    $endgroup$
    – Jon Custer
    3 hours ago












  • 1




    $begingroup$
    I am not sure if both the solutions and mixtures tags apply here.
    $endgroup$
    – uhoh
    4 hours ago






  • 2




    $begingroup$
    With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
    $endgroup$
    – Jon Custer
    3 hours ago






  • 1




    $begingroup$
    @JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
    $endgroup$
    – uhoh
    3 hours ago







  • 2




    $begingroup$
    just trying to whip it into a nice froth for my coffee in the morning...
    $endgroup$
    – Jon Custer
    3 hours ago







1




1




$begingroup$
I am not sure if both the solutions and mixtures tags apply here.
$endgroup$
– uhoh
4 hours ago




$begingroup$
I am not sure if both the solutions and mixtures tags apply here.
$endgroup$
– uhoh
4 hours ago




2




2




$begingroup$
With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
$endgroup$
– Jon Custer
3 hours ago




$begingroup$
With an appropriate heat of mixing, the solution might well be possible. Not sure if there is literature on this mixture, but if I have time I’ll give it a whirl...
$endgroup$
– Jon Custer
3 hours ago




1




1




$begingroup$
@JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
$endgroup$
– uhoh
3 hours ago





$begingroup$
@JonCuster I hope "give it a whirl" doesn't mean you're going to try to mix the two!
$endgroup$
– uhoh
3 hours ago





2




2




$begingroup$
just trying to whip it into a nice froth for my coffee in the morning...
$endgroup$
– Jon Custer
3 hours ago




$begingroup$
just trying to whip it into a nice froth for my coffee in the morning...
$endgroup$
– Jon Custer
3 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here






share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    30 mins ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "431"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111355%2fcan-a-stoichiometric-mixture-of-oxygen-and-methane-exist-as-a-liquid-at-standard%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here






share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    30 mins ago















2












$begingroup$

There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here






share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    30 mins ago













2












2








2





$begingroup$

There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here






share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



There's a NASA report that looks into this: "ON THE SOLUBILITIES AND RATES OF SOLUTION OF GASES IN LIQUID METHANE", Hibbard and Evans, 1968 and concludes that such mixtures are possible.



Starting on page 8:




Figure 5(a) presents the curves for oxygen, argon, carbon monoxide,
and nitrogen. Also shown are the two experimental values for nitrogen.
Agreement is excellent at 99.83K and good at 110.9K. The curves for
these gases show that solubility should decrease with increasing
temperature and the nitrogen data confirm this. This figure shows the
mole fraction solubility of oxygen to be 1.0 at 90K. This means that
oxygen, which has a normal boiling temperature of 90.1K would
continuously condense in, and be miscible in all proportions, with
liquid methane at 90K.
This is confirmed by reference 11 where, in a
study of the solubility of methane in liquid oxygen, it was concluded
that these formed a near-ideal solution at -297 F (90K)




(emphasis added) Reference 11 mentioned in there is "Hydrocarbon-Oxygen Systems Solubility", McKinley and Wang, 1960 (unfortunately paywalled) which also has interesting discussion of the stability (i.e. presence or absence of a tendency to explode) of various mixtures.



Figure 5 is reproduced below. Note how the solubility of oxygen rises rapidly as temperature drops.



enter image description here







share|improve this answer










New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this answer



share|improve this answer








edited 9 mins ago





















New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 38 mins ago









Bob JacobsenBob Jacobsen

1212




1212




New contributor




Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Bob Jacobsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    30 mins ago
















  • $begingroup$
    Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
    $endgroup$
    – uhoh
    30 mins ago















$begingroup$
Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
$endgroup$
– uhoh
30 mins ago




$begingroup$
Bingo! What a great find, thank you! I think you can (should) also post an answer at the linked question as well.
$endgroup$
– uhoh
30 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Chemistry Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111355%2fcan-a-stoichiometric-mixture-of-oxygen-and-methane-exist-as-a-liquid-at-standard%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Magento 2 duplicate PHPSESSID cookie when using session_start() in custom php scriptMagento 2: User cant logged in into to account page, no error showing!Magento duplicate on subdomainGrabbing storeview from cookie (after using language selector)How do I run php custom script on magento2Magento 2: Include PHP script in headerSession lock after using Cm_RedisSessionscript php to update stockMagento set cookie popupMagento 2 session id cookie - where to find it?How to import Configurable product from csv with custom attributes using php scriptMagento 2 run custom PHP script

Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2