0 rank tensor vs 1D vector The Next CEO of Stack OverflowHistory of Electromagnetic Field TensorIn field theory, why are some symmetry transformations applied to the field values while other act on the space that the fields are defined on?Possible confusion, the inertia of something yields a tensor? (trying to understand an example)Confusion about the mathematical nature of Elecromagnetic tensor end the E, B fieldsWhat exactly is the Parity transformation? Parity in spherical coordinatesHow to represent tensors in a base? And some questions about indicesA fundamental question about tensors and vectors4-Vector DefinitionDoubts on covariant and contravariant vectors and on double tensorsZero order Tensor

What happened in Rome, when the western empire "fell"?

Why is information "lost" when it got into a black hole?

Why the difference in type-inference over the as-pattern in two similar function definitions?

How did people program for Consoles with multiple CPUs?

Won the lottery - how do I keep the money?

Some questions about different axiomatic systems for neighbourhoods

Is French Guiana a (hard) EU border?

Does increasing your ability score affect your main stat?

INSERT to a table from a database to other (same SQL Server) using Dynamic SQL

How to install OpenCV on Raspbian Stretch?

Why didn't Khan get resurrected in the Genesis Explosion?

What is the value of α and β in a triangle?

Domestic-to-international connection at Orlando (MCO)

Does soap repel water?

Newlines in BSD sed vs gsed

Can a Bladesinger Wizard use Bladesong with a Hand Crossbow?

What flight has the highest ratio of time difference to flight time?

Rotate a column

is it ok to reduce charging current for li ion 18650 battery?

Chain wire methods together in Lightning Web Components

Prepend last line of stdin to entire stdin

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

A Man With a Stainless Steel Endoskeleton (like The Terminator) Fighting Cloaked Aliens Only He Can See

Make solar eclipses exceedingly rare, but still have new moons



0 rank tensor vs 1D vector



The Next CEO of Stack OverflowHistory of Electromagnetic Field TensorIn field theory, why are some symmetry transformations applied to the field values while other act on the space that the fields are defined on?Possible confusion, the inertia of something yields a tensor? (trying to understand an example)Confusion about the mathematical nature of Elecromagnetic tensor end the E, B fieldsWhat exactly is the Parity transformation? Parity in spherical coordinatesHow to represent tensors in a base? And some questions about indicesA fundamental question about tensors and vectors4-Vector DefinitionDoubts on covariant and contravariant vectors and on double tensorsZero order Tensor










4












$begingroup$


What is the difference between zero-rank tensor $x$ (scalar) and 1D vector $[x]$?



As far as I understand tensor is anything which can be measured and different measures can be transformed into eachother. That is, there are different basises for looking at one object.



Is lengh a scalar (zero rank tensor)?
I think it is not.
ex.:



  • physical parameter: writing pen's length

  • tensor: $l$

  • length in inches: $[5.511811023622]$

  • length in centimeters: $[14]$

  • transformation law: 1cm = 2.54inch

so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    What is the difference between zero-rank tensor $x$ (scalar) and 1D vector $[x]$?



    As far as I understand tensor is anything which can be measured and different measures can be transformed into eachother. That is, there are different basises for looking at one object.



    Is lengh a scalar (zero rank tensor)?
    I think it is not.
    ex.:



    • physical parameter: writing pen's length

    • tensor: $l$

    • length in inches: $[5.511811023622]$

    • length in centimeters: $[14]$

    • transformation law: 1cm = 2.54inch

    so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



    The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










    share|cite|improve this question











    $endgroup$














      4












      4








      4





      $begingroup$


      What is the difference between zero-rank tensor $x$ (scalar) and 1D vector $[x]$?



      As far as I understand tensor is anything which can be measured and different measures can be transformed into eachother. That is, there are different basises for looking at one object.



      Is lengh a scalar (zero rank tensor)?
      I think it is not.
      ex.:



      • physical parameter: writing pen's length

      • tensor: $l$

      • length in inches: $[5.511811023622]$

      • length in centimeters: $[14]$

      • transformation law: 1cm = 2.54inch

      so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



      The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










      share|cite|improve this question











      $endgroup$




      What is the difference between zero-rank tensor $x$ (scalar) and 1D vector $[x]$?



      As far as I understand tensor is anything which can be measured and different measures can be transformed into eachother. That is, there are different basises for looking at one object.



      Is lengh a scalar (zero rank tensor)?
      I think it is not.
      ex.:



      • physical parameter: writing pen's length

      • tensor: $l$

      • length in inches: $[5.511811023622]$

      • length in centimeters: $[14]$

      • transformation law: 1cm = 2.54inch

      so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



      The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.







      tensor-calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      Szabolcs Berecz

      1031




      1031










      asked 3 hours ago









      coobitcoobit

      350110




      350110




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            1 hour ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            1 hour ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            48 mins ago












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469598%2f0-rank-tensor-vs-1d-vector%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            1 hour ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            1 hour ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            48 mins ago
















          6












          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            1 hour ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            1 hour ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            48 mins ago














          6












          6








          6





          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$



          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 hours ago

























          answered 2 hours ago









          G. SmithG. Smith

          10.2k11428




          10.2k11428











          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            1 hour ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            1 hour ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            48 mins ago

















          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            1 hour ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            1 hour ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            48 mins ago
















          $begingroup$
          I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
          $endgroup$
          – coobit
          1 hour ago





          $begingroup$
          I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
          $endgroup$
          – coobit
          1 hour ago













          $begingroup$
          @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
          $endgroup$
          – Chiral Anomaly
          1 hour ago




          $begingroup$
          @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
          $endgroup$
          – Chiral Anomaly
          1 hour ago












          $begingroup$
          Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
          $endgroup$
          – G. Smith
          48 mins ago





          $begingroup$
          Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
          $endgroup$
          – G. Smith
          48 mins ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469598%2f0-rank-tensor-vs-1d-vector%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Magento 2 duplicate PHPSESSID cookie when using session_start() in custom php scriptMagento 2: User cant logged in into to account page, no error showing!Magento duplicate on subdomainGrabbing storeview from cookie (after using language selector)How do I run php custom script on magento2Magento 2: Include PHP script in headerSession lock after using Cm_RedisSessionscript php to update stockMagento set cookie popupMagento 2 session id cookie - where to find it?How to import Configurable product from csv with custom attributes using php scriptMagento 2 run custom PHP script

          Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

          How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2