Taylor expansion of ln(1-x) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Basic Taylor expansion questionStuck on Taylor expansion questionTaylor expansion of the Error functionUsing substitution while using taylor expansionTaylor expansion of a matrix to scalar functionTaylor expansion of $log(x - x^2)$ at 0?Taylor expansion of $(1-x)(1-y)$.Taylor Expansion of Eigenvector PerturbationTaylor expansion of $ln(1 + frac2^xn)$How to see the following Taylor expansion?

Crossing US/Canada Border for less than 24 hours

What order were files/directories outputted in dir?

AppleTVs create a chatty alternate WiFi network

Chinese Seal on silk painting - what does it mean?

How does the math work when buying airline miles?

How do living politicians protect their readily obtainable signatures from misuse?

Project Euler #1 in C++

What was the first language to use conditional keywords?

ArcGIS Pro Python arcpy.CreatePersonalGDB_management

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

What are the diatonic extended chords of C major?

How to play a character with a disability or mental disorder without being offensive?

How fail-safe is nr as stop bytes?

Dating a Former Employee

Effects on objects due to a brief relocation of massive amounts of mass

What does it mean that physics no longer uses mechanical models to describe phenomena?

Morning, Afternoon, Night Kanji

What initially awakened the Balrog?

Is there any word for a place full of confusion?

How would a mousetrap for use in space work?

Is there hard evidence that the grant peer review system performs significantly better than random?

Illegal assignment from sObject to Id

How to compare two different files line by line in unix?

Question about debouncing - delay of state change



Taylor expansion of ln(1-x)



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Basic Taylor expansion questionStuck on Taylor expansion questionTaylor expansion of the Error functionUsing substitution while using taylor expansionTaylor expansion of a matrix to scalar functionTaylor expansion of $log(x - x^2)$ at 0?Taylor expansion of $(1-x)(1-y)$.Taylor Expansion of Eigenvector PerturbationTaylor expansion of $ln(1 + frac2^xn)$How to see the following Taylor expansion?










3












$begingroup$


I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
$$
ln(1-x) = -x-dots
$$

But assuming $x$ is small and expand around $1$, I got
$$
ln(1-x) approx ln(1) + fracd(ln(1-x))dxbiggvert_x=0[(1-x)-1] approx 0 + frac11-xbiggvert_x=0(-1)(-x) = x.
$$

Using the definition of Taylor expansion $f(z) approx f(a) + fracdf(z)dzbiggvert_z=a(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.



I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.










share|cite|improve this question







New contributor




Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    3












    $begingroup$


    I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
    $$
    ln(1-x) = -x-dots
    $$

    But assuming $x$ is small and expand around $1$, I got
    $$
    ln(1-x) approx ln(1) + fracd(ln(1-x))dxbiggvert_x=0[(1-x)-1] approx 0 + frac11-xbiggvert_x=0(-1)(-x) = x.
    $$

    Using the definition of Taylor expansion $f(z) approx f(a) + fracdf(z)dzbiggvert_z=a(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.



    I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.










    share|cite|improve this question







    New contributor




    Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      3












      3








      3





      $begingroup$


      I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
      $$
      ln(1-x) = -x-dots
      $$

      But assuming $x$ is small and expand around $1$, I got
      $$
      ln(1-x) approx ln(1) + fracd(ln(1-x))dxbiggvert_x=0[(1-x)-1] approx 0 + frac11-xbiggvert_x=0(-1)(-x) = x.
      $$

      Using the definition of Taylor expansion $f(z) approx f(a) + fracdf(z)dzbiggvert_z=a(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.



      I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.










      share|cite|improve this question







      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
      $$
      ln(1-x) = -x-dots
      $$

      But assuming $x$ is small and expand around $1$, I got
      $$
      ln(1-x) approx ln(1) + fracd(ln(1-x))dxbiggvert_x=0[(1-x)-1] approx 0 + frac11-xbiggvert_x=0(-1)(-x) = x.
      $$

      Using the definition of Taylor expansion $f(z) approx f(a) + fracdf(z)dzbiggvert_z=a(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.



      I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.







      calculus






      share|cite|improve this question







      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 3 hours ago









      LepnakLepnak

      182




      182




      New contributor




      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Lepnak is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          If one considers
          $$
          f(x)=ln (1-x),qquad |x|<1,
          $$
          one has
          $$
          f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
          $$
          giving, by the Taylor expansion,
          $$
          f(x)=0-x-fracx^22+O(x^3)
          $$
          as $x to 0$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
            $endgroup$
            – Lepnak
            2 hours ago










          • $begingroup$
            The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
            $endgroup$
            – Minus One-Twelfth
            2 hours ago











          • $begingroup$
            Hmm I think I see what I did wrong. Thanks for all your answers.
            $endgroup$
            – Lepnak
            2 hours ago


















          2












          $begingroup$

          $$y=ln(1-x)$$
          $$y'=-frac11-x=-sum_n=0^inftyx^n$$
          so
          $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Lepnak is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3193068%2ftaylor-expansion-of-ln1-x%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            If one considers
            $$
            f(x)=ln (1-x),qquad |x|<1,
            $$
            one has
            $$
            f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
            $$
            giving, by the Taylor expansion,
            $$
            f(x)=0-x-fracx^22+O(x^3)
            $$
            as $x to 0$.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
              $endgroup$
              – Lepnak
              2 hours ago










            • $begingroup$
              The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
              $endgroup$
              – Minus One-Twelfth
              2 hours ago











            • $begingroup$
              Hmm I think I see what I did wrong. Thanks for all your answers.
              $endgroup$
              – Lepnak
              2 hours ago















            1












            $begingroup$

            If one considers
            $$
            f(x)=ln (1-x),qquad |x|<1,
            $$
            one has
            $$
            f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
            $$
            giving, by the Taylor expansion,
            $$
            f(x)=0-x-fracx^22+O(x^3)
            $$
            as $x to 0$.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
              $endgroup$
              – Lepnak
              2 hours ago










            • $begingroup$
              The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
              $endgroup$
              – Minus One-Twelfth
              2 hours ago











            • $begingroup$
              Hmm I think I see what I did wrong. Thanks for all your answers.
              $endgroup$
              – Lepnak
              2 hours ago













            1












            1








            1





            $begingroup$

            If one considers
            $$
            f(x)=ln (1-x),qquad |x|<1,
            $$
            one has
            $$
            f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
            $$
            giving, by the Taylor expansion,
            $$
            f(x)=0-x-fracx^22+O(x^3)
            $$
            as $x to 0$.






            share|cite|improve this answer











            $endgroup$



            If one considers
            $$
            f(x)=ln (1-x),qquad |x|<1,
            $$
            one has
            $$
            f(0)=0,quad f'(x)=-frac11-x,quad f'(0)=-1,quad f''(x)=-frac1(1-x)^2,quad f''(0)=-1,
            $$
            giving, by the Taylor expansion,
            $$
            f(x)=0-x-fracx^22+O(x^3)
            $$
            as $x to 0$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 2 hours ago

























            answered 3 hours ago









            Olivier OloaOlivier Oloa

            109k17178294




            109k17178294











            • $begingroup$
              Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
              $endgroup$
              – Lepnak
              2 hours ago










            • $begingroup$
              The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
              $endgroup$
              – Minus One-Twelfth
              2 hours ago











            • $begingroup$
              Hmm I think I see what I did wrong. Thanks for all your answers.
              $endgroup$
              – Lepnak
              2 hours ago
















            • $begingroup$
              Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
              $endgroup$
              – Lepnak
              2 hours ago










            • $begingroup$
              The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
              $endgroup$
              – Minus One-Twelfth
              2 hours ago











            • $begingroup$
              Hmm I think I see what I did wrong. Thanks for all your answers.
              $endgroup$
              – Lepnak
              2 hours ago















            $begingroup$
            Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
            $endgroup$
            – Lepnak
            2 hours ago




            $begingroup$
            Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
            $endgroup$
            – Lepnak
            2 hours ago












            $begingroup$
            The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
            $endgroup$
            – Minus One-Twelfth
            2 hours ago





            $begingroup$
            The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
            $endgroup$
            – Minus One-Twelfth
            2 hours ago













            $begingroup$
            Hmm I think I see what I did wrong. Thanks for all your answers.
            $endgroup$
            – Lepnak
            2 hours ago




            $begingroup$
            Hmm I think I see what I did wrong. Thanks for all your answers.
            $endgroup$
            – Lepnak
            2 hours ago











            2












            $begingroup$

            $$y=ln(1-x)$$
            $$y'=-frac11-x=-sum_n=0^inftyx^n$$
            so
            $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$






            share|cite|improve this answer











            $endgroup$

















              2












              $begingroup$

              $$y=ln(1-x)$$
              $$y'=-frac11-x=-sum_n=0^inftyx^n$$
              so
              $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$






              share|cite|improve this answer











              $endgroup$















                2












                2








                2





                $begingroup$

                $$y=ln(1-x)$$
                $$y'=-frac11-x=-sum_n=0^inftyx^n$$
                so
                $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$






                share|cite|improve this answer











                $endgroup$



                $$y=ln(1-x)$$
                $$y'=-frac11-x=-sum_n=0^inftyx^n$$
                so
                $$ln(1-x)=-sum_n=0^inftyfracx^n+1n+1=-sum_n=1^inftyfracx^nn$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 2 hours ago

























                answered 2 hours ago









                E.H.EE.H.E

                16.8k11969




                16.8k11969




















                    Lepnak is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Lepnak is a new contributor. Be nice, and check out our Code of Conduct.












                    Lepnak is a new contributor. Be nice, and check out our Code of Conduct.











                    Lepnak is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3193068%2ftaylor-expansion-of-ln1-x%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Magento 2 duplicate PHPSESSID cookie when using session_start() in custom php scriptMagento 2: User cant logged in into to account page, no error showing!Magento duplicate on subdomainGrabbing storeview from cookie (after using language selector)How do I run php custom script on magento2Magento 2: Include PHP script in headerSession lock after using Cm_RedisSessionscript php to update stockMagento set cookie popupMagento 2 session id cookie - where to find it?How to import Configurable product from csv with custom attributes using php scriptMagento 2 run custom PHP script

                    Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                    How to solve knockout JS error in Magento 2 Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?(Magento2) knockout.js:3012 Uncaught ReferenceError: Unable to process bindingUnable to process binding Knockout.js magento 2Cannot read property `scopeLabel` of undefined on Product Detail PageCan't get Customer Data on frontend in Magento 2Magento2 Order Summary - unable to process bindingKO templates are not loading in Magento 2.1 applicationgetting knockout js error magento 2Product grid not load -— Unable to process binding Knockout.js magento 2Product form not loaded in magento2Uncaught ReferenceError: Unable to process binding “if: function()return (isShowLegend()) ” magento 2